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Motivation
Wave fields in nature (and, in seas, in particular) are intrinsically random.
They can be described deterministically only for relatively short spans
(For water waves ∼ 102 periods (Annenkov & Shrira 2001)).

The challenge of describing wave turbulence, i.e. evolution of random
weakly nonlinear dispersive waves in various contexts is a major open
fundamental problem.

Most existing theoretical approaches to modelling of long-term evolution
of random weakly nonlinear waves are based on the wave kinetic equation
(KE). But, we do not know how good it is.

Here we examine the kinetic equation (KE) and its generalization by
comparing their predictions with direct numerical simulations. We show
that there is a significant discrepancy and, therefore, the fundamental
assumptions underpinning the KEs have to be re-visited.



Background

We will be interested in spatially uniform media where all weakly
nonlinear waves without loss of generality can be described as an
ensemble of interacting Fourier modes (w.r.t. spatial coordinates)
characterized by their time dependent complex amplitudes a(k, t). Long
time evolution of such modes is intrinsically random and therefore for
large times only a statistical description makes sense. Hence the ultimate
goal of all efforts aimed at understanding random nonlinear waves in a
myriad of physical contexts (plasmas, ocean surface waves, internal
gravity and Rossby waves in the ocean and atmosphere, waves in solid
body shells, spin waves in magnetics, etc) is to find how statistical
characteristics of the wave field at hand evolve. The full description of a
random field should yield time dependence of probability density function
and of all kind of correlators. At present we are very far away from that
goal. The most common approach is to introduce a hierarchy of momenta

〈aka∗k1〉, 〈ak1a
∗
k2a

∗
k3〉, ...

and try to find out their evolution.



Most of the theoretical and experimental efforts was concentrated on the
evolution of the second moment. The equations governing the evolution
of the second moment (i.e., the energy spectra) are called kinetic
equations (KEs).

When we consider weakly nonlinear waves, then, to leading order
statistical properties do not evolve, since the linear modes do not
interact. Employing standard perturbation approach one can derive an
infinite chain of equations for the moments: the evolution of the second
order moments is expressed in terms of the the third or fourth order
moments, the latter are expressed in terms of higher order moments and
so forth. To truncate this infinite chain of equations the only way
practised universally so far is to employ ”closure hypothesis”.

Here we do not report progress in this direction, on the contrary,
we will show that the universally adopted closure hypothesis has to
be re-visited.



In the water wave context the KE is often referred to as the Hasselmann
equation (Hasselmann 1962).

dn(k,x, t)

dt
= Sinput + Sdiss + Snl

where 〈aka∗k1〉 = n(k, t)δ(k− k1) , n(k is the 2D wave action spectrum.
The interaction term Snl, dominant for energy carrying waves, is derived
from first principles employing an asymptotic procedure based upon
smallness of nonlinearity parameter ε and a number of additional
assumptions:

Snl = 4π

∫
T 2

0123f0123δ0+1−2−3δ(ω0 + ω1 − ω2 − ω3) dk123, (1)

where f0123 = n2n3(n0 + n1)− n0n1(n2 + n3), ni ≡ n(ki),
δ0+1−2−3 ≡ δ(k0 + k1 − k2 − k3) and T0123 is given by an explicit but a
page long expression.



Background
The KE is based on two major assumptions:

I quasi-gaussianity (the central element of the statistical closure)

I quasi-stationarity

textbfemphQuasi-stationarity means that the KE is not applicable to the
situations with rapid changes of the environment, such as wind gusts.
Due to lack of alternatives, this fact is usually ignored, and the standard
KE is used to model the response to an instant and sharp increase or
decrease of wind (e.g. , Young & van Agthoven 1997).

Quasi-gaussianity is the central assumption:the phases of interacting
waves are assumed to be totally random to leading order, weak
correlations emerge due to nonlinearity.

A clarification of degree of validity and the role of both assumptions is
important and relevant within and beyond the water wave context.



Generalised kinetic equation (gKE)
The gKE is derived using the same statistical closure as the KE, but
without the assumption of quasi-stationarity. In the derivation of the
kinetic theory, we have the equation for the spectrum in terms of the

higher-order cumulant J
(1)
0123 : J0123δ0+1−2−3 =< b0b1b

∗
2b

∗
3 >

∂n0

∂t
= 2Im

∫
T0123J

(1)
0123δ0+1−2−3 dk123,

and the equation for the cumulant(
i
∂

∂t
+ ∆ω

)
J

(1)
0123 = −2T0123f0123,

where ∆ω = ω0 +ω1−ω2−ω3, f0123 = n2n3(n0 +n1)−n0n1(n2 +n3).
Classic KE derivation drops ∂/∂t and leads to the approximate solution
for large time in terms of generalised functions

J
(1)
0123(t) = −2T0123

[
P

∆ω
+ iπδ(∆ω)

]
f0123(t),

where P is “principal value”, δ is Dirac δ-function.



Generalised kinetic equation (gKE)
The gKE is derived using the exact solution of the differential equation
for the cumulant (Annenkov & Shrira 2006 JFM, 561). The resulting
equation (gKE) has the form

∂n0

∂t
= 4Re

∫ {
T 2

0123

[∫ t

0

e−i∆ω(τ−t)f0123 dτ

]

− i

2
T0123J

(1)
0123(0)ei∆ωt

}
δ0+1−2−3 dk123 + Sinp/diss .

The gKE is nonlocal in time: evolution of the spectrum depends on the
previous history of evolution, starting from the initial moment when the

value of cumulant J
(1)
0123(0) is prescribed as the initial condition.

However, the gKE can be solved iteratively. On each time step, the value

of J
(1)
0123 is computed and taken as the new initial condition, so that the

‘internal’ time integration is performed over one timestep only.
Details of the algorithm: Annenkov & Shrira, Modelling transient sea
states with the generalised kinetic equation, In: Rogue and Shock Waves
in Nonlinear Dispersive Media, M.Onorato et al (eds), Springer, 2016.



Generalised kinetic equation (gKE) - numerics

I specify a computational grid ωmin ≤ ω ≤ ωmax and
θmin ≤ θ ≤ θmax, ω is spaced logarithmically

I for each three grid points a fourth wave is found as
k4 = k1 + k2 − k3, and bilinear interpolation is used to find the
corresponding amplitude

I both resonant and non-resonant interactions are taken into account,
with a certain (large) cutoff

I all interaction coefficients are pre-calculated, stored and distributed
evenly across the parallel processors

I initial condition for J
(1)
0123(0) is taken as zero (“cold start”)

I the right-hand side of the gKE and the value of J
(1)
0123 are computed

on each timestep, and J
(1)
0123 is used as the new initial condition

I standard Runge-Kutta-Fehlberg time-stepping algorithm with
automatic step choice

I since almost all computations are performed in parallel, the
algorithm has a nearly perfect scalability



Example ( U10/cp = 5)

Evolution of the energy spectrum E(ω) with time, under constant wind
forcing with initial U/cp = 5. Spectra are plotted every 100 characteristic
periods, gKE (blue curves) vs KE (dashed green curves,
WRT(Webb-Resio-Tracey) code kindly provided by Gerbrandt van
Vledder)



Direct numerical simulation (DNS-ZE)
Based on the Zakharov equation

i
∂b0
∂t

= ω0b0 +

∫
T0123b

∗
1b2b3δ0+1−2−3 dk123 + . . .

If we want to apply a dynamical algorithm for the study of wave
statistics, we have to overcome one substantial difficulty. For numerics, a
continuous wave field needs to be discretised, i.e.

b(k, t) =

N∑
j=1

bj(kj , t).

Most models of nonlinear evolution employ a fast Fourier transform on
each step, which requires a regular grid. The Zakharov equation allows
the use of an arbitrary grid. However, for any grid the resulting discrete
wave system will have properties differing from those of a continuous
wave field. In order to model a continuous wave field correctly, every
degree of freedom of a discretised wave field is expected to interact with
every other degree of freedom. This means that we need, instead of a
straightforward discretisation, to work out the concept of coarse-graining
of the continuous wave field, which would retain its fundamental
properties of nonlinear interactions.



We build in Fourier space a grid consisting of ∼ 5 · 103 wave packets,
coupled through exact and approximate resonant interactions. A wave
packet, centred at k0, is characterised by one amplitude and one phase,
but has finite bandwidth in Fourier space, and is allowed to enter into
nonlinear interactions with other wavepackets, provided that the
wavevector mismatch

∆k = k0 + k1 − k2 − k3

does not exceed a certain threshold (the coarse-graining parameter).
Thus, the standard resonance condition k0 + k1 − k2 − k3 = 0 is relaxed.
It has been verified that we need to consider only resonant and
approximately resonant interactions, prescribing a similar condition on
the frequency mismatch ∆ω, where

∆ω = ω0 + ω1 − ω2 − ω3.



In more practical terms, the following condition is formulated: a quartet
of grid points is assumed to be in approximate resonance if its wavevector
and frequency mismatch satisfies

∆ω/ωmin < λω, |∆k|/kmin < λkω̄/ωmin, (2)

where ∆ω and |∆k| are the frequency and wavevector mismatch in the
quartet, ωmin and kmin are the minimum values of frequency and
wavenumber in the quartet, ω̄ is the mean frequency, and λω and λk are
the detuning parameters, chosen to ensure that the total number of
resonances is O(N2), where N is the number of grid points. The
resulting system of N discrete equations can be integrated in time by a
standard Runge-Kutta scheme. Here, we will use 161 k-points
9 < k < 355 m−1 and 41 θ-points within −4π/9 ≤ θ ≤ 4π/9, and
λk = 0.03, λω = 0.01. The total number of resonant and near-resonant
interactions is approximately 3.2 · 108. Initial phases of waves are
random, averaging is over 100 realisations.



Initial conditions

We are going to compare all three approaches (KE, gKE and DNS-ZE)
and some other simulations of certain initial spectra, without wind
forcing. As initial conditions, we consider two JONSWAP spectra with
the same frequency distribution (Hs = 0.08 m, Tp = 1 s, ε = 0.11, and
γ = 6), different only in the initial directional distribution.

I Spectrum I (“narrow”) – corresponds to N = 840 in the cosN model

I Spectrum II (“wide”) – corresponds to N = 24

The same spectra were used as initial conditions in the experimental
study by Onorato et al (2009) and numerical studies by Toffoli et al
(2010) and Xiao et al (2013).
In particular, Xiao et al (2013) performed numerical simulations of the
evolution (only about 150 periods) of the same initial spectra using
higher-order spectral method (HOS) and broadband NLS (Dysthe
equation, BMNLS).
Thus, we can consider the short-term evolution of these spectra (without
wind forcing) with five different approaches, based on different sets of
assumptions, and use the results for comparison and validation of the
new algorithms.



first 150 periods

Evolution (first 150 periods) of spectrum I (narrow in angle) and II
(wider in angle), with a direct comparison of 5 approaches (modified
from figure 7a,b of Xiao et al 2013)



Growth rates over first 50 periods, spectrum I

Growth rates dE(ω, t)/dt over first 50 periods of evolution, with 5
approaches (values for HOS and BMNLS taken from figure 7 of Xiao et
al 2013). Initial peak is at ω = 2π



Directional spread

As a measure of the angular width of the spectrum, it is convenient to
use the average of the second-order moment of directional distribution,
defined as

θm = θ2(k),

θ2(k) =

(∫ π/2

0

θ2D(k, θ) dθ

)1/2(∫ π/2

0

D(k, θ) dθ

)−1/2

,

where D(k, θ) is the angular distribution function of the spectrum
(Hwang et al 2000).



Evolution of mean directional width

Evolution (first 150 periods) of the averaged angular spread θm of
spectra I and II, with a direct comparison of 5 approaches (modified from
figure 7c of Xiao et al 2013)



Short-term evolution – summary

Direct comparison of DNS-ZE with HOS and BMNLS, and of the two
kinetic equations shows that

I KE and gKE results coincide in the wider case II

I in the narrow case I, the KE overestimates the amplitude of the
spectral peak, compared to gKE

I DNS-ZE, HOS and BMNLS are consistent with each other, but
different from both kinetic equations

I the kinetic equations show more narrow spectra, with a pronounced
overshoot, while the DNS algorithms give wider spectra with lower
amplitude of the peak

I there is a dramatic difference in the rate of angular broadening,
which is consistent between DNS-ZE, HOS and BMNLS, much
higher for gKE, and even higher for the KE

I growth rates over the first 50 periods are higher for the kinetic
equations than for the DNS algorithms

This validates both the gKE and the DNS-ZE approaches in the short
term. Now we can proceed with studying the long-term evolution



Long-term evolution, spectrum I

Long-term spectral evolution for spectrum I, with the comparison of
DNS-ZE and both kinetic equations (KE and gKE). Spectra are plotted
every 300 periods



long-term evolution, spectrum II

Long-term spectral evolution for spectrum II



Peak wavenumber and wave steepness

Evolution of the wavenumber of the spectral peak (vs the theoretical
asymptotics: ∼ t−2/11) and wave steepness for spectra I and II



Peak amplitude

Evolution of the amplitude of the spectral peak (with theoretical
asymptotic ∼ t4/11) for spectra I and II



long-term evolution of mean directional spreading



Evolution of a narrow initial spectrum again

Evolution of initial spectrum I: direct comparison of DNS-ZE, KE and gKE.

Spectra are plotted every 300 periods.



Role of modulational instability

Is the modulational instability responsible for the difference between DNS
and the kinetic equations spectra?

I The modulational instability is part of the dynamics, but is not
present in the statistical models.

I In order to clarify its role, we consider a “modified” Zakharov
equation with the opposite sign of the interaction coefficient.

I This equation leads to the same kinetic theory (which does not
depend on the sign of the coefficient), but does not include
modulational instability.

I Will the spectral evolution simulated with the correct and
“modified” Zakharov equation be different (and, perhaps, the latter
be closer to the statistical models??)

Simulations show that the hypothesis is incorrect: the spectral evolution
remains the same (upon averaging over realisations).



Growth rates for different amplitudes, spectrum II

Growth rates dE(ω, t)/dt over first 50 periods of evolution, with DNS,
KE and gKE, for amplitude multiplied by 1/

√
2, 1 and

√
2



Growth rates for small amplitude, spectrum II

Growth rates dE(ω, t)/dt over first 50 periods of evolution, with DNS,
KE and gKE, for half amplitude



Scaling of growth rates

In order to understand how the growth rates of wave action n(k, t) scale
with nonlinearity within different approaches, we find the maximum value
of dn/dt and perform a numerical fit

log max dn/dt = ν log ε+ β

over 5 different amplitudes (different from the initial one by 1/2, 1/
√

2,
1,
√

2 and 2). Thus, we draw a straight line through 5 points by least
squares, find the coefficient ν and the 95% confidence bounds for it.
We know a priori that the KE, being an equation in real variables, has
the strict ν = 6 scaling (that is, dn/dt ∼ ε6). The values of ν for other
approaches are to be found numerically.



Scaling for maximum growth rates, spectrum I

Exponent ν of the scaling as εν for maximum growth rates for KE, gKE
and DNS-ZE, and its 95% confidence bounds. The initial spectral peak is
at k = 4π2 ≈ 39.5. Blue: KE(WRT), purple: gKE, orange: DNS-ZE



Scaling for maximum growth rates, spectrum II

Exponent ν of the scaling for maximum growth rates for KE, gKE and
DNS-ZE, and its 95% confidence bounds. The initial spectral peak is at
k = 4π2 ≈ 39.5. Blue: KE(WRT), purple: gKE, orange: DNS-ZE



Conclusions

We have considered the short- and long-term evolution of narrow spectra
without wind forcing, using three different models, employing different
sets of assumptions. The gKE employs the statistical closure, but is free
of quasi-stationarity assumption. DNS-ZE does not depend on any
statistical assumptions.

I the gKE agrees with the classic KE (WRT algorithm) for the
evolution of frequency spectra where it should and diverges where it
should not (for initial spectra very narrow in angle)

I gKE and DNS-ZE allow long-term simulations of spectra, which is
not possible with other existing alternatives to the KE

I in the long term, all three approaches demonstrate very close
evolution of integral characteristics of spectra, approaching for
large time the theoretical asymptotes of the self-similar stage of
evolution



Conclusions continued

I however, there is a striking difference for the rate of angular
broadening, which is much larger for the gKE and especially for the
KE, than for the DNS-ZE

I DNS-ZE results show considerably wider frequency (or wavenumber)
spectra with less pronounced peak

I the DNS-ZE rates of change of the spectra scale as ε4, whicg
corresponds to the dynamical (not kinetic) timescale of evolution

I the gKE scaling of growth rates is close to the ε6 scaling of the KE,
but the exponent is distinctively less than 6

I the growth rates are close for small nonlinearity (ε ≤ 0.05) and
diverge for ε = O(0.1)

I the difference of growth rate scaling in the presence of self-similarity
can be responsible for the difference in spectral shapes and rates of
angular broadening



Discussion

We attribute the found major
discrepancies between the DNS and
KE to shortcomings of the
quasi-gaussian closure. It seems
that at least in the maximal growth
stage of field evolution an
(unidentified yet) coherent
component is essential.



Thank you!







simulations with constant wind

I the grid: 101 logarithmically spaced points in the range
0.5 ≤ ω ≤ 3, 31 uniformly spaced angles −7π/9 ≤ θ ≤ 7π/9

I cutoff: ∆ω/ωmin ≤ 0.25

I the total number of interactions exceeds 3 · 109

I time stepping is performed by Runge-Kutta-Fehlberg algorithm with
absolute tolerance 10−10 and timestep limited from above by
approximately 1/3 characteristic wave period

I initial conditions are specified as the spectra parameterised by
Donelan et al (1985) for 2 ≤ U10/cp ≤ 6, where cp is the phase
speed of the initial spectral peak

I initial peak frequency ω = 1

I wind forcing by Hsiao and Shemdin (1983) for the corresponding U10

I for comparison, the standard KE (WRT) algorithm is used, the code
provided by Gerbrandt van Vledder



integral characteristics

Evolution of various spectral characteristics for wind speed 2 ≤ U/cp ≤ 6.
Numbers indicate the wind speed U/cp. (a) amplitude of the peak (b)
peak wavenumber (c) wave steepness (d) directional spread θm



instant increase of wind

Evolution of the energy spectrum E(ω) with time, under constant wind
forcing with initial U/cp = 3, after about 800 periods instantly increasing
by a factor of 2.5. Spectra are plotted every 22 characteristic periods



growth rates over first 50 periods, spectrum II

Growth rates dE(ω, t)/dt over first 50 periods of evolution, with 5
approaches (values for HOS and BMNLS taken from figure 7 of Xiao et
al 2013). Initial peak is at ω = 2π


