
Evolution of non-Gaussian wave fields

Sergey Nazarenko
University of Warwick, UK

joint work with Y. Choi, Y. Kwon and S. Jo

Theoretical challenges in wave turbulence, Warwick 8-9 May, 2017

Sergey Nazarenko University of Warwick, UK joint work with Y. Choi, Y. Kwon and S. JoEvolution of non-Gaussian wave fields 1 / 19



Outline

Most of WT theory considers the wave spectrum. In my book I summarise
an approach considering evolution of the probability density functions
(PDFs) of the wave amplitudes and derive evolution equation for these
objects. Here, I will discuss a general non-stationary solution for the
1-mode PDF and derive conditions for achieving Gaussianity.
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Master example: Gross-Pitaevskii equation

Gross-Pitaevskii equation describes waves in BEC and in nonlinear optics:

i
∂ψ

∂t
+∇2ψ − |ψ|2ψ = 0 . (1)

where ψ = ψ(x, t) is a complex function of two or three space coordinates
and time t.
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Fourier space

Let us consider a periodic system, x ∈ Td , with period L in all directions
(d = 2 or 3). Using Fourier coefficients

ak(t) =
1

Ld

∫
Box

ψ(x.t)e−ik·xdx , (2)

rewrite the GP equation as

i ȧk = ωkak + i
∑
1,2,3

a1a2a3δ
3k
12 , (3)

where the frequency of this wave is

ωk = k2 . (4)

Here, a1,2,3 ≡ ak1,2,3 , and δ3k
12 = δ(k3 + k− k1 − k2).

In the linear limit,
ak = Ake

−iωk t , (5)

where Ak ∈ C is a time-independent amplitude of the wave.
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Discrete k-space

Since we consider a periodic system, x ∈ Td , the wavenumbers are
discrete, k ∈ Zd . Let the total number of modes be finite and bounded by
some kmax (eg. a dissipation cutoff at high wavenumbers). Denote by BN

the set of all wavenumbers k inside the k-space box of volume (2kmax)d :

Figure: Set of active wave modes, BN ⊂ Zd .
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Amplitude-Phase representation

We write the wave function in terms of its amplitude and phase

a(k, t) =
√
Jkφk ,

where Jk ∈ R+ is the intensity and φk ∈ S1 is the phase factor of the
mode k. By S1 we mean the unit circle in the complex plane, i.e.
φk = e iϕk :
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Probability Density Functions.

Denote the set of all Jk and φk with k such that k ∈ BN as {J, φ}.
The probability of finding Jk inside (sk, sk + dsk) ⊂ R+ and finding φk on
the arch (ξk, ξk + dξk) ⊂ S1 (see Figure) is given in terms of the joint PDF
P(N){s, ξ} as

P(N){s, ξ}
∏

k∈BN

dsk|dξk| . (6)

Single-mode amplitude PDF, P(1,a) ≡ P(a)
k (sk), is obtained via integrated

out all phases ξ, and all amplitudes s but one, sk.
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RP fields.

Definition. Random phase (RP) field: all φ are independent random
variables (i.r.v.) each uniformly distributed on S1.
Thus for a RP field

P(N){s, ξ} =
1

(2π)N
P(N,a){s} .

Note: RP (in addition to the weak nonlinearity) is enough for the lowest
level WT closure leading to an equation for the N-point amplitude-only
PDF. However, it is not sufficient for the one-point WT closure, in
particular the wave kinetic equation, and we need to assume something
about the amplitudes too.
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Random Phase and Amplitude (RPA) field definition

1 All the amplitudes and all the phases are i.r.v.,

2 All the phases are uniformly distributed on S1,

3 For RPA fields, the PDF has a product-factorized form,

P(N){s, ξ} =
1

(2π)N

∏
kl∈BN

P(a)
j (sj). (7)

We have changed the standard meaning of RPA which usually stands for
“Random phase approximation”. In our definition of RPA:

1 The amplitudes are random, not only the phases.

2 RPA is defined as a property of the field, not an approximation.

RPA does not mean Gaussianity because it does not specify P(a)
j (sj). For

Gaussian fields P(a)(sj) = 1

〈Jj〉 exp

[
− sj

〈Jj〉

]
. WT does not require

Gaussianity, only RPA, so we can study non-Gaussian fields!
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The spectrum

Wave spectrum

The wave spectrum is defined as follows

nk = (L/2π)d 〈Jk〉 .

For the infinite-box limit,

〈ψk , ψ
∗
k ′〉 = nkδ(k− k′) ,

where δ(x) is the Dirac’s delta function.
In terms of the generating function and the PDF, the wave spectrum can
be expressed as follows,

nk =

∫ ∞
0

skP(a)(sk)dsk .
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Assumptions

Assumptions in the wave turbulence theory

Weak nonlinearity.

Initial RP statistics.
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Wave Turbulence closure

Equation for the PDF.

We have the following equation for the PDF,

Ṗ = 8π

∫
δ(ωjl

mn)δjlmn

[
δ

δs

]
4

(
sjslsmsn

[
δ

δs

]
4

P
)

dkjdkldkmdkn,

[
δ

δs

]
4

=
δ

δsj
+

δ

δsl
− δ

δsm
− δ

δsn
.

No phases: phase randomness propagated. Amplitudes not separated:
amplitude randomness only in coarse-grained sense.
Multiplying by sk and integration over all sj , we get the kinetic equation:

ṅk = 4π

∫
nk1nk2nk3nk

[
1

nk
+

1

nk3

− 1

nk1

− 1

nk2

]
×

δ(ωk + ωk3 − ωk1 − ωk2)δ(k + k3 − k1 − k2) dk1dk2dk3.
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Solutions for the PDF

Solutions for the PDF

An arbitrary function of the un-averaged energy E =
∫
ωksk dk is is a

steady solution,
Ṗ(E ) = 0.

This property is common for all Liouville-type N-particle equations.
An important special case is given by the exponential function,

P = e−β
∫
ωk sk dk,

where β is an arbitrary constant. To understand the meaning of this
solution, let us write its discrete version:

P =
N∏
j

e−βωj sj .

This solution describes a thermodynamic equilibrium, corresponding to N
statistically independent Gaussian-distributed modes with a mean intensity
given by a Rayleigh-Jeans spectrum, nk ∼ 1/ωk .
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Non-stationary solutions

Evolution of the one-mode PDF

Evolution equation for the one-mode PDF:

∂P(t, s(k))

∂t
+

∂F

∂s(k)
= 0, (8)

with the probability flux

F = −s
(
γP + η

∂P

∂s

)
(9)

and

ηk(t) = 4πε2

∫
δ(ωjl

mn)δjlmnn1n2n3dk1dk2dk3,

γk(t) = 8πε2

∫
δ(ωjl

mn)δjlmn

[
n1(n2 + n3)− n2n3

]
dk1dk2dk3.

Gaussian fields with P = 1
nk

exp
[
− sk

nk

]
satisfy the stationary equation

(with F = 0). Can we find a solution for evolving systems?
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Non-stationary solutions

Non-stationary solutions

Theorem

1 Wave fields which are Gaussian initially will remain Gaussian for all
time.

2 Wave turbulence asymptotically becomes Gaussian if

lim
t→∞

n(0)e−
∫ t

0 γ(t′)dt′

n(t)
= 0. (10)

Sergey Nazarenko University of Warwick, UK joint work with Y. Choi, Y. Kwon and S. JoEvolution of non-Gaussian wave fields 15 / 19



Non-stationary solutions

Remarks:

1 Condition (10) is satisfied for the inertial range modes in
forced-dissipated systems which tend to a steady state. Indeed, in this
case γ → η/n which is a positive constant (at fixed mode k), so the
time integral of this quantity diverges as t →∞.

2 In absence of forcing and dissipation, spectrum nk decays to zero at
any mode k as t →∞, and so does γk. Thus the integral of γk(t)
may converge as t →∞, which means that non-Gaussianity of some
(or all) wave modes may persist as t →∞.

3 In general, function γk(t) is not sign definite, and there may be
transient time periods where γk(t) < 0. The deviation from
Gaussianity of some (or all) wave modes may increase during these
periods.
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Non-stationary solutions

General time-dependent solution

We have:

P(t, s) =

∫ ∞
0
P(0, J)PJ(t, s)dJ. (11)

where the Green function is

PJ(t, s) =
1

ñ
e−

s
ñ
−añI0(2

√
as), (12)

ñ = n(t)− Je−
∫ t

0 γ(t′)dt′ (13)

(note that n(0) = J and ñ(0) = 0), a = J
ñ2 e
−

∫ t
0 γ(t′)dt′ and I0(x) is the

zeroth modified Bessel function of the first kind. Since I0(0) = 1, so we
recover Pδ → PG = 1

ne
−s/n as t →∞ if condition (10) is satisfied

provided that s is not too large, as � 1.
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Non-stationary solutions

Asymptotic behaviour

Now let us suppose that condition (10) is satisfied and let consider the
asymptotic behaviour of the probability distribution at large s and large t,
and as � 1 (i.e. s is much larger than 1/a which is itself large). Taking
into account that I0(x)

x→∞−−−→ ex√
2πx

, we have:

PJ(s, t)→ PG
(2π)1/2(as)1/4

e2
√
as−as � PG for as � 1,

∫ t

0
γ(t ′)dt ′ � 1.

(14)
Thus, we see a front at s ∼ s∗(t) = 1/a moving toward large s as t →∞.
The PDF ahead of this front is depleted with respect to the Gaussian
distribution, whereas behind the front it asymptotes to Gaussian.
Obviously, the same kind of behaviour will be realised for any solution (11)
arising from initial data having a finite support in s.
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Non-stationary solutions

Conclusions

For the inertial range modes in forced-dissipated systems approaching
a steady state, the Gaussian statistics will form at t →∞.

Since, the typical evolution times are the same for nk and for the
PDF, the latter will remain non-Gaussian over a substantial time if
the initial field is non-Gaussian. Such situations are typical in natural
conditions with non-Gaussian forcing and in numerics with initially
deterministic intensities.

In absence of forcing and dissipation, non-Gaussianity may persist as
t →∞. Furthermore, the deviation from Gaussianity of some (or all)
wave modes may increase during transient periods.
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