# Some things I don't understand about wave turbulence

#### Colm Connaughton

Mathematics Institute and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL

> London Mathematical Laboratory, 14 Buckingham St, London WC2N 6DF

#### Wave Turbulence SIG meeting University of Warwick, May 09, 2017

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

## Wave turbulence in a nutshell

Nonlinear dispersive wave equation with n-wave interaction

$$\frac{\partial a_{\mathbf{k}}}{\partial t} \sim -i\,\omega_{\mathbf{k}}\,a_{\mathbf{k}} + \int (d\mathbf{k})^{n-1}\,W_{\mathbf{k}}^{(n)}(a_{\mathbf{k}})^{n-1}\,\delta(\mathbf{k}). \tag{1}$$

For isotropic, scale invariant systems dispersion,  $\omega_{\mathbf{k}}$ , and interaction coefficient,  $W_{\mathbf{k}\mathbf{k}_{1}...\mathbf{k}_{n-1}}^{(n)}$ , can be written

$$\omega_{\mathbf{k}} = c \, k^{\alpha}$$
$$W^{(n)}_{\mathbf{k} \, \mathbf{k}_{1} \dots \mathbf{k}_{n-1}} = g \, k^{\gamma_{n}} \, f_{\mathbf{k} \, \mathbf{k}_{1} \dots \mathbf{k}_{n-1}},$$

where *c* and *g* are dimensional constants,  $\alpha$  and  $\gamma_n$  are scaling exponents which are independent in principle.

Kinetic equation - statistics of weakly nonlinear limit of (1):

$$\frac{\partial n_{\mathbf{k}}}{\partial t} \sim \int (d\mathbf{k})^{n-1} (W_{\mathbf{k}}^{(n)})^2 (n_{\mathbf{k}})^{n-1} \,\delta(\mathbf{k}) \,\delta(\omega_{\mathbf{k}}). \tag{2}$$

where the wave spectrum  $n_{\mathbf{k}}$  is defined by

$$\langle a_{\mathbf{k}} a_{\mathbf{k}'}^* \rangle = n_{\mathbf{k}} \, \delta(\mathbf{k} - \mathbf{k}'). \tag{3}$$

### Is there an analogue of Kolmogorov's 4/5 Law?

For 3-D Navier-Stokes turbulence, have exact relation:

$$\langle \left[ \mathbf{v}_{l}(\vec{r},t) - \mathbf{v}_{l}(\vec{0},t) \right]^{3} \rangle = -\frac{4}{5} \epsilon r, \quad l \ll r \ll L.$$
(4)

For 4-wave turbulence in the inverse cascade regime:

$$\frac{\partial n_k}{\partial t} = \frac{\partial J_N}{\partial k} = \int \prod_{i=1}^3 d\mathbf{k}_i \left[ W^{(4)}(\mathbf{k}, \mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \Pi_{0,1;2,3} + \text{perms} \right].$$
(5)

is also exact (without weak nonlinearity assumption) where

$$\Pi_{0,1;2,3} = \int \prod_{i=0}^{3} d\Omega_{i} \mathrm{Im} \langle a_{\vec{k}}^{*} a_{\vec{k}_{1}}^{*} a_{\vec{k}_{2}} a_{\vec{k}_{3}} \rangle \rangle.$$

Scaling and Zakharov transformation gives "exact" scaling:

$$\Pi_{0,1;2,3} \sim k^{-(\gamma_4 + 4d)}.$$
 (6)

Are there models where an analogous statement can be made in physical space?

#### The generalised Phillips/critical balance spectrum

The formula

$$n_{\mathbf{k}}=c^{u}\,g^{v}\,J^{w}\,k^{-x}.$$

is dimensionally correct for any x if we choose

$$u = \frac{2\gamma_n + (n-1)d - (n-1)x}{(n-1)\alpha - \gamma_n}$$
$$v = -\frac{2\alpha + d - x}{(n-1)\alpha - \gamma_n}$$
$$w = \frac{(n-2)x + 2\alpha - 2\gamma_n - (n-2)d}{2((n-1)\alpha - \gamma_n)}$$

Choosing  $n_k$  independent of J (w = 0) gives:

$$x = \frac{2\gamma_n - 2\alpha}{n - 2} + d. \tag{7}$$

This is the critical balance or generalised Phillips spectrum. Can this scaling be related to the dynamical equations?

#### What are the properties of steady nonlocal cascades?

Kinetics of coagulation is equivalent to isotropic 3-wave turbulence with "backscatter" terms removed from kinetic equation. Simple enough to study nonlocality analytically.

> Stationary state has the asymptotic form for *M* ≫ 1:



$$\gamma = \nu - \mu - \mathbf{1}.$$

- Stretched exponential for small *m*, power law for large *m*.
- Agrees well with numerics without any adjustable parameters.

Amplitude **vanishes** as  $M \rightarrow \infty$ . What happens to the flux?



## Time-dependent solutions of the kinetic equation?







Dynamical scaling exponents

- Instability of steady state coagulation in nonlocal regime: steady mass flux replaced by periodic pulses. Can a similar phenomenon occur for wave turbulence?
- Finite capacity anomaly: why do some finite capacity systems exhibit anomalous dynamical scaling and others don't?
- Instantaneous singularities: is the kinetic equation well posed for all physical choices of interaction coefficient?

Questions (or answers)?