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Motivation: vortices and more vortices

« wing-tip vortices (NASA)

- draining Lake Texoma, USA




Turbulence

Leonardo da Vinci’s sketch

« vortices in turbulence simulations
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Leonardo’s imagery of falling water (1508-09)
[Source: http://www.visi.com/~reuteler/leonardo.html]

- vortices in guantum turbulence




Instabllities

 von Karman vortex street

« Crow instability

Karman vortex street behind a cylinder placed in uniform flow.
Re ~ 300 [Courtesy: Sadotoshi Taneda; from An Album of Fluid
Motion by Van Dyke (1982)]

+ Kelvin-Helmholtz instability g

- Widnall vortex ring instability



Navier-Stokes and Euler equations

- Take constant density, constant viscosity, incompressible flow and write
Diu =0u+u-Vu=—-Vp+rViu, V-u=0
- with kinematic viscosity = 1/p and replacing p/p by p for convenience

- Euler equation for ideal flow v = 0 (highly singular limit)

Diu =0u+u-Vu=—Vp, V-u=0



Vorticity equation

« Takethecurlof O;u = u X w — VP

» to obtain vorticity equation for ideal flow

Ow =V X (u X w)

Diw=0w+u-Vw=w- -Vu

* or for non-zero viscosity ,
Diw=0w+u-Vw=w- -Vu+rVw

- eliminates pressure but still have the tricky link w = V X u



Vortex filament motion

* local approximations giving the motion of a thin tube of vorticity - a vortex
filament

* by Helmholtz and Kelvin, the filament moves and stretches with the fluid
motion

- wecanalsoinvert w = V X u by the Biot-Savart law

» combines dynamics and differential geometry of curves



Vortex filament: Biot-Savart integral

- integral links velocity to vorticity (suppress time-dependence)

u(r) = 1 /D(r—r’) X w(r’) v

A r —7|°

- take vorticity confined to a thin tube along a curve C and has circulation T"
(integral of vorticity across a surface area) of

u(r) =

F}{('r—r’)xdr’
4w Je  |r—7/3

- orthonormal Serret-Frenet basis {t,n, b}

dr dt n _ . db_
KT, E——f: + TO, ﬁ——'rn . z,

ds ~  ds

5
» arclength 8, curvaturek, torsionr /r(s) a



Local velocity from a filament

+ filament through origin O with axes (z,¥, z) aligned with {to, 70, bo} (at O)

, dr dt
. 7‘=3t0+%f’\332n0+"' as t=d—=t0+l‘$3n0+"', nzd—ZfinO-l—"'
S S

» look at velocity at a point r = yny + zb, in plane perpendicular to vortex at O

r ]{(r—r’) x dr’
C

u(r) = A4 i —r'[3

d'f',=(t0+f€8’n0+“‘)d8

7'—7',=—St0+(y—%RSQ)TL‘FZbo‘I'“‘

i —r|? =y + 2+ (1 — ky) + 38"+ -+
(r' —r) x dr' = [—zksty + 2ny — (y + %FGSQ)I)O +.-.]ds



Integration to give local flow

Biot-Savart along a filament u(r) = —

Ff (r—7') x dr’
i Je  |r—7'|3
—zksty + zng — (y + %nsQ)bo

I L
f R ks £
rom a local length is ar )L g2 + 22 + $2(1 — wy) + K251

ds

put point (0,y,2) = o(0,cosp,sing) and <¢=s/o

I /L/ o o7 (bgcosp — ngsin qb) 2 ks%bg i
u = *
dm J-ro [1 +¢2(1 — ko cos @) + 1 5202 ¢4]3/2
- we want to be close to the filament ¢ — 0, leaving
I /L/U 0~ (bg cos ¢ — my sin @) + S ks> bg 2
U = — -
4w J-L/o (1+ ¢2)3/2 °

U= L (bg cos ¢ — nosmqb)Jerolog£
2mo 47



Local flow

at position (0,y,2) = (0, cos ¢, sin ¢)

. I , I
flowis u = 5 (10 8in ¢ — by cos @) + 4KJ by log

L

mo ™ o

including strong local circulation, which does not move the filament

. . . . I L
and a weaker flow in the binormal direction ﬁ b, log o

has a logarithmic dependence on cut-off and vortex filament width

or

treat as a constant: velocity of vortex filament is now 5 — V= Ckb

or

or by rescaling time, i kb



Local induction approximation (LIA)

* points 7(s,t) on the curve (C(t) with Serret-Frenet

Or_t Bt_ 8n——t+b Ob__
s 7 s v g T THMTTH G T TR
 and velocity G (6)
%r=mb S
//' 2 _7:(5,(:)
* Or
Br_arxé?Qr
ot Os  0s?

* beautiful but highly idealised : no vortex stretching, only local induction,
vortex width and cut-off scale fudged



—volution of curvature and torsion - |

l R

dash for S8 derivative r'=t, t'=kn, n'=—kt+71h, b =-Tn
general motion (for present) 7 =v = vt +v,n+ upb
now t=7' andso t=1+ =9 = At+ Bn + Cb with

A=v,—kv,, B=rkv+v,—T08, C=10,+1,
have ¢ = fkn+xkn and ' = At + Akm + B'n + B(—kt+71b) + C'b— Cmn

equate these gives mn = Dt+ En + Fb with

kD=A"—kB, kE=kA+B —17C -k, kF=1B+(C'



—volution of curvature and torsion - |

, R

dash for 8 derivative r'=t t =kn, n'=—-kt+7b, b =-n

general motion (for present) 7 =v = vt +v,n+ upb

have n' = —kt — kt +7b+7b and #' = D't + Dkn + E'n + E(kt +7b) + F'b — Frn
equate these gives b= Gt + Hn + Kb with

TG =D'—k(E—A)+k, TH =k(D+B)+E —7F, 7K =7E+F +KC—7

have linked A, B, C, D, E, F, G, H, K to velocity components in

r=v=ut+v,n+ub



—volution of curvature and torsion - |l

to close the system we use the fact that {t,7,b} is an orthonormal basis

t?=n’=b"=1, t-n=n-b=>b-t=0

andso 2t-t=2n-n=2b-b=0, t-n+t-n=n-b+n-b=b-t+b-t=0

with t=7=v'=At+Bn+Cb
n=Dt+ En+ Fb

b=Gt+ Hn+ Kb
wehave A=E=K=0, D+B=0, G+C=0, H+F=0



—guations for curvature and torsion

- A =0 gives equation from arc-length parameterisation « €=

v, = KUp, m

- E=0 and K = 0 give

k= (kv + v, — 1) — (TU, + V)T

7= [k (kv + U, — TO)T + K (U, + 1) + (TU, + U)K

-orforLIA vn=v=0 v =k



—quations for curvature and torsion under LIA

or ot on 0b

95 t, 5 KT, 95 = —kt + 7b, 9 — —TNn GC(;)

N
- a lot of manipulation... gives

S
// b (s, )
k= —kT — 26'T

;= (Ii_ln" o 7_2)/ 1 K,K,,

* prime denotes derivative with respect to arclength

- ...link to nonlinear Schrodinger equation (integrable PDE)...



Knot evolution under LIA

* Ricca, Samuels, Barenghi: evolve a torus knot under LIA




—volution of F(2,3) and F(3,2) under LIA




—volution of F(3,2) under LIA and Biot-Savart




William Irvine and collaborators (Chicago)

* vortex rings created by dragging a knotted aerofoil through water:

- https://www.youtube.com/watch?v=YCAQVIExVhg (1:10)

- https://www.youtube.com/watch?v=9CnilX-oLrl

- https://www.youtube.com/watch?v=LdOX24KwSUU

- https://www.youtube.com/watch?v=CoUqglS21w6cC



https://www.youtube.com/watch?v=YCA0VIExVhg
https://www.youtube.com/watch?v=9CnilX-oLrI
https://www.youtube.com/watch?v=LdOX24KwSUU
https://www.youtube.com/watch?v=CoUglS21w6c

Vortex stretching

» this important phenomenon is not in the LIA though it appears in more
sophisticated models

* intense fine-scale vortices seen in 3-d turbulence

» vortex stretching creates fine scales

 question of the regularity of the 3-d Euler equation: Jorg Schumacher

- starting with smooth initial conditions, does the solution remain smooth for
all time?

fundamental, unsolved problem:



Clay Millenium prizes

- In order to celebrate mathematics in the new millennium, The Clay
Mathematics Institute of Cambridge, Massachusetts (CMI) has named
seven Prize Problems. The Scientific Advisory Board of CMI selected these
problems, focusing on important classic questions that have resisted
solution over the years.

+ Birch and Swinnerton-Dyer Conjecture
- Hodge Conjecture

- Navier-Stokes Equations

- Pvs NP

 Poincare Conjecture  --- proven!

* Riemann Hypothesis

* Yang-Mills Theory


http://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/
http://www.claymath.org/millennium/Hodge_Conjecture/
http://www.claymath.org/millennium/Navier-Stokes_Equations/
http://www.claymath.org/millennium/P_vs_NP/
http://www.claymath.org/millennium/Poincare_Conjecture/
http://www.claymath.org/millennium/Riemann_Hypothesis/
http://www.claymath.org/millennium/Yang-Mills_Theory/

Navier-Stokes equations

%, ~\  Ou; 3 |
o Rt R nogs u(z,0) = u’(z x € R").
atuz-i-jz::lu]axj vAu; — +fz(a: t) (x € R",t > 0), (z,0) (z) ( )
dlvu—zauzz (z € R",t > 0)
axz p) —

(A) Existence and smoothness of Navier—Stokes solutions on R®. Take v >
0 and n = 3. Let u°(z) be any smooth, divergence-free vector field satisfying (4).

Take f(z,t) to be identically zero. Then there exist smooth functions p(z, t), u;(z, t)
on R? x [0, 00) that satisfy (1), (2), (3), (6), (7).

(B) Existence and smoothness of Navier—Stokes solutions in R3®/Z3. Take
v > 0 and n = 3. Let u°(z) be any smooth, divergence-free vector field satisfying
(8); we take f(z,t) to be identically zero. Then there exist smooth functions p(z, t),
u;(z,t) on R3 x [0, 00) that satisfy (1), (2), (3), (10), (11).

(C) Breakdown of Navier—Stokes solutions on R*. Take v > 0 and n = 3.
Then there exist a smooth, divergence-free vector field u°(z) on R*® and a smooth
f(z,t) on R3 x [0, 00), satisfying (4), (5), for which there exist no solutions (p,u)
of (1), (2), (3), (6), (7) on R? x [0, 00).

(D) Breakdown of Navier—Stokes Solutions on R3®/Z3. Take v > 0 and
n = 3. Then there exist a smooth, divergence-free vector field u°(z) on R® and a
smooth f(z,t) on R3 x [0, 00), satisfying (8), (9), for which there exist no solutions

(p,u) of (1), (2), (3), (10), (11) on R? x [0, 00).

These problems are also open and very important for the Euler equations (v = 0),
although the Euler equation is not on the Clay Institute’s list of prize problems.



|[dealised vorticity stretching

- o
« full equation — w -
g Diw=w-Vu /f Shreteining
no £ e
. idealised ODE 2 selj Y
dt stretching (A
. solution  w() =(wy —t)7, w(0)=wo 8!
4 N

. singular blow-up at time wg -
* but: vorticity tends to stretch perpendicular vorticity, not itself
 problem of geometrical complexity

* e.g. no stretching (no singularity) in two dimensions



Beale-Kato-Majda theorem

rigorous result

Suppose we start with a smooth Euler flow at time ¢ = 0 and that at time ¢ =t~
it is no longer smooth. Then, necessarily

L
/ max (w(r,s)|ds o0 as t—t'
0 [
clear numerical criterion to capture any loss of smoothness

eliminates certain types of singularities, e.g. if the maximum w ~ (t* —t)™"
then 8 >1



—xact solutions of blow-up

 Let A be any symmetric trace-free matrix, then

u=(t"—t)"Ar, p=-Lt"—t)r- (A+ 4% r

- satisfies the Euler equation. But infinite energy, blows up everywhere at
once, even in 2-d

- flows of the form  u = (f(z,1),y9(z, 1), zh(z,1)) g I /
Lo
/ )
. e.g., in 2-d channel u = (f(z,t), —yf.(z,t),0) /
p
. can show blow-up, e.g., f(z,0) = ;2(2 — z) / \
I —9 Ve N g
) T
t* — 7[.2/6 O / -



Colliding vortices

* in 2-d a vortex pair of opposite signs translates, and similarly in 3-d

+
2-4

—

(©) —p”
N> 2
C)

T

* No vortex stretching though

 try two pairs at right angles



Colliding vortex pairs: Moffatt

- idea: two vortex pairs propagate towards, and stretch, each other

- vorticity intensified, feedback to faster evolution

- singularity? not clear ; viscosity may not stop a singularity if it occurs



Colliding vortex pairs: Pelz

» 8 pairs colliding; highly symmetrical flow

S{S N NG N SN S s
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SRR NN N w .
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NN N ~

AN VNS SN s N

forticity contours (5,10,15,20 from light to dark) on the symmetry plane
with velocity vectors and streamlines.

- using vortex filaments under Biot-Savart blow-up very clean

 but actual vortices tend to flatten, depleting nonlinearity in simulations



—volution of anti-parallel vortices: Kerr/Bustamante

FIG. & Euler anti-parllel vortices in full periodic domain near ¢ — 2.51. Bright (yellow online) tubes are iscsurface contours
of vorticity modulus corresponding to 80% of the instantancous maximum of vorticity modulus. Dark (red online) clongated
blobs are iscsurfaces corresponding to 9% of the maximum of vorticity modulus.

- vorticity intensifies strongly

- and flattens to form tadpole structures

- singularity at t* = 18.7 ?

0.40 ]
0.30}
0.20+

0.10f

0.00

13 14 15 16 17 18 19
Time



Vortex ring collisions in three dimensions

- https://www.youtube.com/watch?v=XJk8ijAUCil U = ur + vz

w = wé

- https://www.youtube.com/watch?v=USzOciNHeh0&t=182s

- vortex rings move with the fluid (Helmholtz)

- then stretch (vortex line stretching) and accelerate outwards - how auicklv?

71
+ - -
" geomey o < 2 S AN fm)
(O + ud; +v0;)(w/r) =0, w=0v—0.u, B -2 & v
—1: . Ie /"'"‘\
r opTu I Lk
B, (ru) + 0,v = 0 gj) )l .
V £

- approximate 2-d dipole travelling outwards



https://www.youtube.com/watch?v=XJk8ijAUCiI
https://www.youtube.com/watch?v=USzOciNHeh0&t=182s

4\ w
\? E/ T /(O — |
Theoretical ideas ! OO
|
AP | 1& -
- Childress, G, Valiant 2016 o &
YV £
* major and minor axes R(t),a(t) T w
vorticity w ~ R o
dR L@&/ i
velocity — =u~ aw ~ aR
dt ot R (€)
volume V ~ a’R \
energy E ~ Vu® ~ (a*R)(aR)* = a*R*
. ~1/2 dR 1/2 1/2 2 -1
- conserve volume: a~ R e R R12~t, R(t)~t% a(t)~t

* problem... energy diverges: E ~t°



ilii R SO
Theoretical ideas ! S
@
| e a (¢
- Childress, G, Valiant 2016 & &)\
Y £
* major and minor axes R(t),a(t)
vorticity w ~ R
. dR
velocity TS U~ aw aR
volume V ~ a’R
energy E ~ Vu® ~ (a*R)(aR)* = a*R*
- conserve energy: a ~ R3/4 % ~ RYVA  R¥*~t, R(t)~t'3

- necessarily, volume goes down, vorticity shed V ~ a’R =123




\7@ E/ . % @@
\orticity shedding L ER
< R (€)
,éy éy\ Cl(ﬁ)
 original picture a bit naive |
JHEP " v
. conserve energy: energy E ~ Vu® ~ (a’R)(aR)’ = a*R’
 necessarily, volume goes down volume V ~ a’R
R3/4 ~t, R(t) ~ t4/3, a(t) ~ 1] V ~ a’R = t_2/3

- must lose’ volume: shedding of vorticity in a tail behind the propagating
vortex ring pair (visible on movies)

o(€)

<_?
» tadpole’ or snail’ structure emerges T

&-—o
shed

\/or&icfb ‘
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Simulations
* in axisymmetric flow £
¢ Only one rlng ShOWﬂ %% 20 20 80 o 80 100 120 140

FIGURE 8. R*/* versus time, compared with
a linear asvmptote. The letters correspond to the frames of figure 7.

A

FIGURE 7. Development of the snail, shown at times t=0, 15, 21.2, 342,443, 54, clockwise from the upper
left comer. vorticity @ is plotted in the (r,z) plane at each time, scaled on the maximum value (red) in each
plot, with zero blue.




Loss of symmetry

-01F

« up/down symmetry can be lost: 57 58 59 6 61
0.2 T T T T T
~N 0 e
-0.1
-0.2

* also experiments reveal instabilities s .




More general geometry

 Bustamante & Kerr 2008

FIG. & Euler anti-parallel vortices in full periodic domain near ¢ — 2.51. Bright (yellow onlne) tubes are iscsurface contours
of vorticity modulus corresponding to 60% of the instantancous maximum of vorticity modulus. Dark (red online) clongated
blobs are iscsurfaces corresponding to 90% of the maximum of vorticity modulus.

FIG. 6: From left to right, and from top to bottom: six saccemsive, zoomed snapshots of the Euler anti-parallel vortices at
times € - 5.625 6.25 6.875 7.5, 7.8125 8.125. The contours are soctionad through the y = 0 symmetry plane, to facilitate the
view of the structures. Tbommmﬁudmmﬁburwuﬂn&mﬂyﬁmmmm to
the 40%, 60%, 0% and 90% of the walue of the instantancous mmximum vorticity modulus,



Conclusions

- vorticity perhaps best way to understand nearly inviscid flows
* many challenges both for mathematics and analysing physical processes
* such as stretching and reconnection

- with links to outstanding theoretical issues such as the finite-time singularity
question ....

« ... and the nature of turbulence.
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