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Motivation

V.E. Zakharov (SAPM, 2009): Turbulence in Integrable systems.

» Mathematically: theory of integrable nonlinear PDEs with random initial
or boundary conditions.

» 1D conservative models. No vortices or cascades, sorry! No
thermalisation either...

» Solitons and breathers are “particles” of integrable dispersive
hydrodynamics.

» Hence the interest in soliton/breather gases—statistical ensembles of
interacting solitons/breathers—a particular case of integrable turbulence.



Example 1. Soliton gas in viscous fluid conduits

» interfacial dynamics of two immiscible buoyant viscous fluids;
» conduit equation: A; + (A%), — (A%2(A7*A,).). = 0.

» non-integrable, but soliton collisions are nearly elastic
(Lowman, Hoefer and El, JFM 2014)

Soliton gas is created by a random input profile at nozzle

(Experiment at the Dispersive Hydrodynamics Laboratory at the University of Colorado,
Boulder; M. Hoefer and M. Maiden)
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Example 2: Shallow-water soliton gas

week ending
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‘We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm,
for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of
uonlnearwave oion vhere low frequency cnery may aeobe viewsd s  dousssolon ga, descibed
theoretically by the soliton limit of the
Hence the phrase “soliton turbulence” s synonymous with “integrable
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which supports our interpretation or the data as soliton turbulence. From the probability density of the
solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.
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Experimental Evidence of a Hydrodynamic Soliton Gas

Ivan Redor," Eric Barthélemy,' Hervé Michallet,' Miguel Onorato,” and Nicolas Mordant"*
"Laboratoire des Ecoulements Geophysiques et Industriels, Universite Grenoble Alpes, CNRS,
Grenoble-INP, F-38000 Grenoble, France
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‘We report on an experimental realization of a bidirectional soliton gas in a 34-m-long wave flume in a
shallow water regime. We take advantage of the fission of a sinusoidal wave to continuously inject solitons
that propagate along the tank, back and forth. Despite the unavoidable damping, solitons retain their profile
adiabatically, while decaying. The outcome is the formation of a stationary state characterized by a dense
soliton gas whose statistical properties are well described by a pure integrable dynamics. The basic
ingredient in the gas. i.e.. the two-soliton interaction, is studied in detail and compared favorably with the
analytical solutions of the Kaup-Boussinesq integrable equation. High resolution space-time measurements
of the surface elevation in the wave flume provide a unique tool for studying experimentally the whole
spectrum of excitations.
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Example 3: Breather gas in the ocean (NLS)

Ocean Dynamics
https://doi.org/10.1007/510236-018-1232-y

Highly nonlinear wind waves in Currituck Sound: dense breather
turbulence in random ocean waves

Alfred R. Osborne’ - Donald T. Resio? - Andrea Costa®* - Sonia Ponce de Leén® - Elisabetta Chiri

Ocean Dynamics

Tine posts 02048 secpont
Fig.17 Time series of §192 points from Currituck Sound at 21:00 on  and the zero crossing period is T. = 2.38 s, giving 705 zero crossing
4 February 2002. The length 962 waves. The blue horizontal lines correspond to the number of standard
min and the discreti deviations above and below the zero mean. The largest measured wave

37 em, the amplitude is 86 cm (over six standard deviations tall) and the largest
. the peak period is T, = 251 s (spectral average over 9 probes)  wave height (the same wave) is 114 cm, which corresponds to 2.08H,
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Outline of the talk

v

Kinetic equation for soliton gas: an elementary construction

v

Finite-gap potentials and nonlinear dispersion relations

v

Thermodynamic limit and the equation of state of breather/soliton gas

» ldeal soliton/breather gas and soliton condensate

v

Kinetic equation for breather/soliton gas and particular solutions



Soliton gas: an elementary construction



Rarefied gas of KdV solitons (zakharov, JETP 1971)

Starting point: N-soliton solution un(x, t) of the KdV equation
ur + 6UUX + Uxx = 0.

If solitons are sufficiently separated, then uy can be locally approximated by a

superposition of N single KdV solitons. Consider a random process:

Uso = 3 2n7sech®[n;(x — 4nft — xi)],
i=1

characterised by two distributions:

1. Spectral distribution function (density of states) f(n): the number of
solitons with 7; € [no, 7m0 + dn] per unit interval of x is f(no)dn.

2. Poisson distribution for x; € R with small density [ f(n)dn < 1.

Properties of soliton collisions
» lsospectrality (dni/dt = 0) = elastic collisions;
» Phase shifts.



Phase (position) shifts

» Solitons interact pairwise (multi-particle effects are absent);

» Each collision gives rise to phase shifts of the interacting solitons.
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For a two-soliton collision with 71 > 7> the phase shifts as t — 400 are

51:i|n(m> , 52:_i|n(m) ,
m nm — 2 72 m — 12



Kinetic equation for a rarified soliton gas (zakharov, JETP 1971)

£, =0.048; 5, =0.65; 5, =0.30
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> Let ne[0,1] and p = fol f(n)dn < 1. Then the speed of a “trial”
n-soliton in a soliton gas with the distribution function f(n):

+
DR )~ 4l -+ o(p)

2 1 [
s(n)=4n"+— [ In
nJo
» Consider now a spatially non-homogeneous soliton gas. Assume
f(n) = f(g;x,t), s(n) = s(n; x, t); Ax, At > 1.
Then isospectrality of the KdV dynamics implies:

fr + (sf)x =0,

» Equations (2), (1) form the kinetic equation for a rarefied soliton gas.

(1)

(2)



Kinetic equation for a dense soliton gas: KdV

Kinetic equation for a dense KdV soliton gas as the thermodynamic limit of the
KdV-Whitham modulation equations (E/, Phys Lett A, 2003)

ft + (fs)x - 07 (3)
() = 40’ + / QIS ORI (4)

» A nonlinear integro-differential equation

» Suggests a general recipe for the construction of soliton kinetic equations
for other integrable PDEs via the phase-shift kernel (El and Kamchatnov, PRL
2005). (Watch out for the talk of T. Congy!)

» Recently derived from a completely different perspective for quantum
many-body integrable systems (B. Doyon et. al. PRL (2018) ...)



Spectral theory of breather/soliton gas

in the focusing NLS equation



Spectral theory of soliton/breather gas: High Level Description

» Kinematic theory of linear dispersive waves (Whitham)
¥ ~ a(x, t)e?™V k= 0,, w=0;

ke = wx;  w = wo(k)

» An analogue for n-phase nonlinear waves ) = W (04, ...,0,):
ke =wys; k= (ki,...,kn), w=(w1,...,wn).
Nonlinear dispersion relations:
k=K(Z,), w=Q(%,),
where ¥, is the "nonlinear Fourier” (IST) band spectrum.

» For a special "thermodynamic" scaling of X, the limit n — oo yields the
kinetic equation for the density of states u(n, x, t)

us + (us)x =0, s(n,x,t) = Flu(n,x,t)],

where 1 € C, and the functional F specifies the "equation of state" for a
soliton (breather) gas.



Focusing NLS equation: spectral problem
ithe + e + 209079 = 0.

The IST method (Zakharov and Shabat 1972) links the NLS time evolution
with the time evolution of the scattering data of the linear ZS equation

O +iX =P, t)\ v _ sy
(fw*(x,t) b)Y =y =0,

where 1(x, t) is the NLS solution, A € C is the spectral parameter,
Y = Y(x,t,\) € C2
The spectrum of ¢: ¥ (1)) = {\ € C|LXY =0,|Y| < oo Vx}

» Decaying potentials: the spectrum X(1)) generally has two components:
discrete (solitons) and continuous (dispersive radiation).

» Finite-band (finite-gap) potentials ¥n: Xn(¢0) = Uigi.
— Multi-phase periodic or quasiperiodic solutions.
Yo =W(b1,...,0,), W(..,0+27m,...)=V(.. 0+2r,...).
0; = kix + wj + 9}0)

—Solitons and breathers are some limiting cases of finite-gap potentials



Emergence of finite-gap solutions in semi-classical evolution

2
i + %wxx P2y =0, e<l.
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El, Khamis and Tovbis, Nonlinearity (2016)

» The solution is locally approximated by finite-gap potentials ;.

» The genus (the number of nonlinear oscillatory modes n) increases with
time.

» Soliton gas at t > 1.
Optics experiment: G. Marcucci et al, Nature Comm. (2019)



Spectral portraits of NLS solitons and “standard” breathers

IST spectral parameter £ € C

(a) Im(§) s (b) . Im(§)
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» (a) fundamental soliton

Ws(x, t) = 2ibsech[2b(x + 4at — xp)]e” 2@+ )0 +ido

(b) Akhmediev breather; (c) Peregrine soliton;
(d) Kuznetsov-Ma breather.
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Tajiri-Watanabe (TW) breather

Im(3)
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Two velocities associated with the TW breather

_ _oSPRe(N)] _ _ 2RAR(N)]
Cg = _2W =stw(A), ¢ = TTRR(Y)

where Ro(A\) = /A2 + ¢2.
» Akhmediev, Kuznetsov-Ma and Peregrine breathers are particular cases of
the TW breather with the double points A\, A of the spectrum located on
the imaginary axis.

Fundamental solitons (TW breathers) are the “particles” in a soliton
(breather) gas.



Breather gas examples: “Akhmediev-like”

and "Peregrine-like" gases
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Finte-Gap NLS solutions

and Nonlinear Dispersion Relations



Finite-gap NLS solutions: basic configuration

» Focusing NLS itp: + e + 2|9)%9 = 0,
» Finite-gap solutions v, live on a hyperelliptic genus n Riemann surface of
R(iz) =[]z = a)"?(z— @)%, oy =a+ib, b >0,
j=0
z € C: the spectral parameter in the Zakharov-Shabat scattering problem.
» Assume even genus n = 2N, N € N.
» Let all bands lie on a 1D Schwarz-symmetrical curve T.

» Exceptional (Stokes) band ~o and regular (“solitonic”) bands ~y+;,
j=1,...,N. Can have several Stokes bands.

» Transition to an odd genus n via closing the Stokes band o



Wavenumbers and frequencies

» Introduce a special wavenumber-frequency set:
kZ(k],....,kN,kl,...,kN), w:(wl.,...,w/\/,d)l,...,w/\/)

» Contrasting behaviours for “solitonic” (k;,w;) and “carrier” (k;, &)
components:

Soliton/breather limit: collapse a band into a double point:

azj — azj1 (|| — 0)

kj,wj — 0, l;j,@j = O(l)

A soliton (breather) on the finite-gap potential background.



Nonlinear dispersion relations for finite-gap NLS solutions

For solitonic components of k, w we obtain nonlinear dispersion relations
ki = kji(at), wj = wj(ax) (cf. Flaschka, Forest, McLaughlin CPAM, (1982) for KdV):

(QdC
> kot sf " R T e

m\l m

2N+1

Z wm\sﬁ = 21R(51 z Rak + #,2),
|m|=1 m k=1

i :1,...,/v,

where
Pi(2) = 3122+ 522" 2+ g
N
R(z) = [ ] (z - 02)"?(z — azjs1)*/?
lil=0

and 37 are the coefficients of the normalised holomorphic differentials:

w; = [Pi(2)/R(2)]dz, ?i wi=385 ij=1,...,N.

i

Similar nonlinear dispersion relations exist for the carrier components k; and &;.



Thermodynamic limit of finite-gap solutions

(Soliton/Breather gas)



Thermodynamic limit

We are interested in a special, large N limit so that Vk; — 0 but
lim Eszl k; = O(1) — the thermodynamic limit

N— oo

» Introduce
1 1 .
= 5z taz), &=l —azyu), Ll=1....N,
7 are the centres of the bands ~; and 2|§;| the bandwidths.

» For the exceptional (Stokes) band o we have §o = (a1 — a—1).



Three spectral scalings
Let N > 1 and assume:

» the band centres 7); are distributed along the curve I' with some limiting
density p(n) >0, n €.

» |nj — nj+1| = O(1/N).

Options for the scaling of the spectral bandwidth |J;|:

(i) Exponential scaling (general):

6]~ e,

where 7(u) is a smooth positive function on T.

(iii) Super-exponential scaling ("ideal gas”’): for any a > 0

6] < e™*"

(i) Sub-exponential scaling (“condensate”): for any a > 0

1
—alN

5'

e <<|,\<<N

For all three scalings: |gap;| = O(1/N) so |band;|/|gap;| — 0 as N — oo:
soliton/breather gas limits



Nonlinear dispersion relations for soliton gas

» Assume the exponential spectral scaling |5;| ~ e~""(") so that for N > 1
the spectrum is characterised by two positive functions: ¢(n) and 7(n)

» Introduce the scaling for solitonic wavenumbers and frequencies:

Y () R

where k(n),v(n) = O(1) are continuous functions on T.

» Apply the limit N — oo to the finite-gap nonlinear dispersion relations. For
soliton gas we obtain (equations for breather gas have similar structure):

p—1

u(p)ldpl 4 o(n)u(n) = 7S,

r=n

/In [l
e H=

) v(p)ldul + a(n)v(n) = 4rSnRn,

where
> u(n) = k(n)p(n) > 0 is the density of states,

> v(n) = v(n)e(n)—its temporal counterpart,

> o(n) = 2;(,;’)) > 0 is the “spectral signature” function.




Ideal gas and soliton/breather condensate

Consider the balance of terms in nonlinear dispersion relations for soliton gas

/ In
Jr+
/ In
Jr+

» u—0, 0 — oo, uo = O(1): ideal gas of non-interacting solitons
(super-exponential spectral scaling); In this limit s(n) = —v/u = —4%n.

=1

w=n

u(p)ldp| + o(n)u(n) = =,

=1

e v(p)ldpl + a(n)v(n) = 4xSnRn,

» o(n) = 0, u(n) = O(1): “soliton condensate” (sub-exponential scaling,
interactions dominate). Fully defined by the spectral locus curve I



Example: bound state soliton condensate
Bound states are N-soliton solutions, in which all solitons travel with the same
speed V; w.lo.g. V =0.

> I'=[-iq,iq]
» The nonlinear dispersion relations for a bound state soliton gas:
v(n) =0, (1)
iq _
p—1 , _ o
/ In P u(p)(=idp) + o(n)u(n) = =Sn (2)

—ig

» For the soliton condensate we have o = 0 and Eq. (2) can be readily
solved (finite Hilbert transform):
—in ..
ue(n) = —==—==, 1€ (=iq,iq). (3)

Eq.(3) coincides with the normalised “Weyl" semi-classical distribution of
discrete spectrum in a rectangular barrier (box) potential of the hight g.

Watch out for tomorrow’s Pierre Suret talk on the bound state soliton
condensate and MI.



Kinetic equation for soliton/breather gas



Equation of state for breather (soliton) gas

Eliminating o(n) from the nonlinear dispersion relations we obtain the equation
of state for breather (soliton) gas

s(n) = so(n) + [ | Ao 0ls() = s()lur)

where s(n) = —v(n)/u(n) is the “tracer” soliton (breather) velocity in a gas.

» For soliton gas:

Lo
so(r) =45 A(1) =~ in| =0

» For breather gas:
RRo(n)
SRo(n)

Ro(n)Ro(1) 4+ np — 65
Ro(7)Ro(t) + 7w — 03

so(n) = Rn + Sn = stw,

|

Here A(7, 1) is the position shift for the 2-soliton (2-breather) interaction.

p—1

A, p) = g

o

|
TS Rom) [ :



The criticality (condensation) condition revisited

The equation for the density of states of a breather (soliton) condensate can be
written as

/ AG u)ldul = 1, (+)

where A(n, i) is the position shift in the breather-breather (soliton-soliton)
interactions, n,u € I't

» Integral (Fredholm 1st kind) equation for the critical density of states u(n)

» In the case of soliton gas can be solved for certain geometries of '™



Kinetic equation

Consider a weakly non-homogeneous soliton/breather gas with u = u(n, x, t),
s = s(n, x, t). Then it can be shown that the density of states satisfies

ur + (us)x =0

Adding the equation of state

s(n) = so(n) + x A(n, w)[s(p) — s(m)]u(p)|dpl,

JI+

we obtain the kinetic equation for breather (soliton) gas.

Remark In the general 2D (spectral) case we replace

/...|duH//...dgdg
i

r+

where ;1 = &€ +i¢ and AT € C" is a 2D compact region.



Remarks

» Another kinetic equation is obtained for the carrier wave wavumber

e + a5 =0; i(n,x,t) = Olu(n,x, t)], §=S[u(n,x,t)]

» Velocity of a “trial” soliton/breather with n # I propagating through a
soliton (breather) gas with the density of states u(n)

so(n) = [+ A0, p)u(p)s(u)|dul

) A )

» For a soliton with spectral parameter 1 propagating through the bound
state soliton condensate with ' = [—iq, ig] we obtain:

43nRn
Q3 /7}2 + q2 ’

— an experimentally verifiable quantity.

(1) = —



Some explicit solutions of the kinetic equation

Watch out for the talk by Thibault Congy tomorrow



Multi-component hydrodynamic reductions

Let

U(U»X7 t) = Z VVj(X7 t)5(7] - 77(]))7

Jj=1

Then the kinetic equation becomes a system of quasilinear conservation laws
W)+ (W) =0, j=1,....M
with closure conditions
Z Ajpmw™ (s —s™), j=1,2,...M,
m=1,m#j
where s'(x, t) = s(n¥, x, t).

» Hyperbolic, linearly degenerate, integrable hydrodynamic type system
(El, Kamchatnov, Pavilov & Zykov, J. Nonlin. Sci 2011)



Shock tube problem for breather/soliton gas
Consider the two-component reduction

(wW)e+ (W) =0, j=12

A12W2($& - 53) 52 o 52 . A21W1(Sé — Sg)
1—(Appw? + Axwl)’ - 1— (Apw? + Apwl)’

with the “shock tube” initial conditions

{ wl(x,0) =wg, w?(x,0)=0, x <0,

w?(x,0) = wg, w'(x,0) =0, x>0,

1 1
sT =55 +

Assume sg > s3>0

Numerical sumulations of the soliton gas shock tube problem (KdV)
(Carbone, El and Dutykh, EPL 2016)



Shock tube problem: weak solution

The weak solution for w! and w? has a piecewise constant form:

1

Wy, x < ct,
Wl(X,t): wl, cTt < x < c't,
0, x > c't.
(1)
0, x < ct,
w?(x,t) =4 wd, cTt < x < c't,
W, x > c't.
where L , , )
wh = wo (1 — Aoiwg) w2 — wo (1 — Arawg)
¢ 1—A12A21W&W§’ N 1—A12A21W3W3’
1 2 1 1 2 2
_ Sso — So)A12w, So — S5 )21 w,
=2 | 0)A12we sy (0 —s0)hawe

1—(Azwd + Aaiw?)’ 1—(Awd + Auw?)’



Conclusions

» Nonlinear dispersion relations and kinetic equations are derived for
soliton and breather gases of the focusing NLS equation;

» The spectral scaling plays crucial role in the balance of terms in the
nolinear dispersion relations

» Sub-exponential scaling corresponds to a soliton/breather condensate
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