Spectral theory of soliton and breather gases in the focusing NLS equation

Gennady EL

(joint work with **Alexander Tovbis**, Central Florida) arXiv:1910.05732

MCMP Mathematics of Complex and Nonlinear Phenomena

Waves, Coherent Structures, and Turbulence, UEA 31 October 2019

Collaborators

- ► Stephane Randoux (University of Lille)
- Pierre Suret (University of Lille)
- ► Thibault Congy (Northumbria)
- ► Giacomo Roberti (Northumbria)

Motivation

V.E. Zakharov (SAPM, 2009): Turbulence in Integrable systems.

- Mathematically: theory of integrable nonlinear PDEs with random initial or boundary conditions.
- ► 1D conservative models. No vortices or cascades, sorry! No thermalisation either...
- ► Solitons and breathers are "particles" of integrable dispersive hydrodynamics.
- Hence the interest in soliton/breather gases—statistical ensembles of interacting solitons/breathers—a particular case of integrable turbulence.

Example 1. Soliton gas in viscous fluid conduits

- interfacial dynamics of two immiscible buoyant viscous fluids;
- conduit equation: $A_t + (A^2)_z (A^2(A^{-1}A_t)_z)_z = 0.$
- ▶ non-integrable, but soliton collisions are nearly elastic (Lowman, Hoefer and El, JFM 2014)

Soliton gas is created by a random input profile at nozzle

(Experiment at the Dispersive Hydrodynamics Laboratory at the University of Colorado, Boulder; M. Hoefer and M. Maiden)

Example 2: Shallow-water soliton gas

PRL 113, 108501 (2014)

PHYSICAL REVIEW LETTERS

week ending 5 SEPTEMBER 2014

Ś

Soliton Turbulence in Shallow Water Ocean Surface Waves

Andrea Costa,¹² Alfrod R. Osborne,²¹ Donald T. Resio,⁵ Silvia Alessio,⁴ Elisabetta Chrivl,⁴ Enricis Saegues,²⁶ Variahis Bellomo,²⁶ and Chack E. Long¹³ ¹Arts Marsellie Universitä, CNRSINSU, IRD, MO, UM 110, 13288 Manenille Coste S, France and Universitä & Toulon, CNRSINSU, IRD, MO, UM 110, 18395 L Gaerafe, France ¹Nonlinear Wares Research Corporation, Arlington, Virginia 2220, USA ¹Dipartimetos el Faise, Christian, Editoria, Editoria, Editoria, Berlindo ¹Dipartimetos d Faise, Christian, Editor, Toribo 1015, Itali ¹Dipartimetos d Faise, Christian, Editoria, Toribo 1015, Mai ¹Dipartimetos Mess Bogian, Angiolis, LIMC, UMP, 1936, 60100 Nice, France ⁴Research Nice Sophie Anapolis, LIMC, UMP, 1936, 60100 Nice, France ⁴Research Nice Sophie Anapolis, LIMC, UMP, UMP, Program La 12149, USA ⁴Research Softworth, Diversion Gamanación recoverá 30 Nine 2014, publicado 25 Sectembre 2014.

We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm, for the first time, the presence of soliton turbulence in cean waves. Soliton turbulence is an exotic from to nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gate, described theorically by the soliton intro the factor knowledge. The soliton turbulence is an exotic from to leagnering the solution intro the factor solico soliton in the soliton are described by the prese soliton turbulence of the soliton in the soliton turbulence is a soliton turbulence." For periodicquagateristic boundary conditions the expection soliton is of the soliton are determined by the basis of our data analysis. We find that large amplitude measured wave trains near the transpective probability of the soliton of the soliton are determined by the soliton system base of the soliton turbulence is the soliton in the soliton are determined by the soliton system base of the soliton is a soliton the soliton are determined by a soliton system base of the soliton system base of the soliton is a soliton in the soliton are determined by a soliton system base of the soliton system base of the soliton are determined by a soliton spectrum and furthal the low frequency -sol⁻¹ region is soliton duration. The soliton have random CFT phases, a soliton random phase approximation, which supports our interpretation of the data as soliton turbulence. From the probability density of the solitons were able to demonstrate that the solitons are determined in the soliton system able to demonstrate that the solitons are determined in the analysis of the solitons were able to demonstrate that the solitons are determined by a soliton turbulence. From the probability density of the solitons were able to demonstrate that the solitons are determined in the analysis of the solitons were able to demonstrate that the solitons are determined by a soliton turbulence. From the probability density of the solitons were able to demonstrate

DOI: 10.1103/PhysRevLett.113.108501

PACS numbers: 92.10.Hm, 92.10.Lq, 92.10.Sx

PHYSICAL REVIEW LETTERS 122, 214502 (2019)

Editors' Suggestion Featured in Physics

Experimental Evidence of a Hydrodynamic Soliton Gas

Ivan Redor,¹ Eric Barthélemy,¹ Hervé Michallet,¹ Miguel Onorato,² and Nicolas Mordant^{1,*} ¹Laboratoire des Ecoulements Geophysiques et Industriels, Universite Grenoble Alpes, CNRS, Grenoble-JNP, F-38000 Grenoble, France ²Dipartimento di Fisica, Università di Torino and INFN, 10125 Torino, Italy

(Received 29 November 2018; published 29 May 2019)

We report on an experimental realization of a bidirectional soliton ages in a 34-m-long wave funne in a shallow water regime. We take advantage of the fission of a simusoidal wave to commously inject solitons that propagate along the tank, back and forth. Despite the unavoidable dumping, solitons retain their profits alsolutically, which descripts for a concort is the formation of a sationary state characterized by a dense soliton gas whose statistical properties are well described by a pure integrable dynamics. The basic analycical solitons of the Kaap-Bossines integrable solution. High resolution space-time measurements of the surface elevation in the wave flume provide a unique tool for studying experimentally the whole spectrum of excitations.

Example 3: Breather gas in the ocean (NLS)

Ocean Dynamics https://doi.org/10.1007/s10236-018-1232-y

Highly nonlinear wind waves in Currituck Sound: dense breather turbulence in random ocean waves

Alfred R. Osborne¹ · Donald T. Resio² · Andrea Costa^{3,4} · Sonia Ponce de León⁵ · Elisabetta Chirivi⁶

Fig. 17 Time series of 8192 points from Currituck Sound at 21:00 on 4 February 2002. The length of the time series is 1677.72 s = 27.962 min and the discretization interval is 0.2048 s. The standard deviation is σ = 13.7 cm, the significant wave height is H_s = 4 σ = 54.7 cm, the peak period is T_ρ = 2.51 s (spectral average over 9 probes)

and the zero crossing period is $T_c = 2.38$ s, giving 705 zero crossing waves. The blue horizontal lines correspond to the number of standard deviations above and below the zero mean. The largest measured wave amplitude is 86 cm (over six standard deviations tall) and the largest wave height (the same wave) is 114 cm, which corresponds to 2.08H,

Outline of the talk

- ▶ Kinetic equation for soliton gas: an elementary construction
- ▶ Finite-gap potentials and nonlinear dispersion relations
- ▶ Thermodynamic limit and the equation of state of breather/soliton gas
- ► Ideal soliton/breather gas and soliton condensate
- ▶ Kinetic equation for breather/soliton gas and particular solutions

Soliton gas: an elementary construction

Rarefied gas of KdV solitons (Zakharov, JETP 1971)

Starting point: N-soliton solution $u_N(x, t)$ of the KdV equation

 $u_t + 6uu_x + u_{xxx} = 0.$

If solitons are sufficiently separated, then u_N can be locally approximated by a superposition of N single KdV solitons. Consider a random process:

$$u_{\infty} = \sum_{i=1}^{\infty} 2\eta_i^2 \operatorname{sech}^2[\eta_i(x - 4\eta_i^2 t - x_i)],$$

characterised by two distributions:

- Spectral distribution function (density of states) f(η): the number of solitons with η_i ∈ [η₀, η₀ + dη] per unit interval of x is f(η₀)dη.
- 2. Poisson distribution for $x_i \in \mathbb{R}$ with small density $\int f(\eta) d\eta \ll 1$.

Properties of soliton collisions

- Isospectrality $(d\eta_i/dt = 0) \implies$ elastic collisions;
- Phase shifts.

Phase (position) shifts

- Solitons interact pairwise (multi-particle effects are absent);
- ▶ Each collision gives rise to phase shifts of the interacting solitons.

For a two-soliton collision with $\eta_1 > \eta_2$ the phase shifts as $t \to +\infty$ are

$$\delta_1 = \frac{1}{\eta_1} \ln \left(\frac{\eta_1 + \eta_2}{\eta_1 - \eta_2} \right) \,, \quad \delta_2 = -\frac{1}{\eta_2} \ln \left(\frac{\eta_1 + \eta_2}{\eta_1 - \eta_2} \right) \,.$$

Kinetic equation for a rarified soliton gas (Zakharov, JETP 1971)

▶ Let $\eta \in [0, 1]$ and $\rho = \int_0^1 f(\eta) d\eta \ll 1$. Then the speed of a "trial" η -soliton in a soliton gas with the distribution function $f(\eta)$:

$$s(\eta) = 4\eta^{2} + \frac{1}{\eta} \int_{0}^{1} \ln \left| \frac{\eta + \mu}{\eta - \mu} \right| f(\mu) [4\eta^{2} - 4\mu^{2}] d\mu + o(\rho)$$
(1)

▶ Consider now a spatially non-homogeneous soliton gas. Assume

 $f(\eta) \equiv f(\eta; x, t), \qquad s(\eta) \equiv s(\eta; x, t); \qquad \Delta x, \Delta t \gg 1.$

Then isospectrality of the KdV dynamics implies:

$$f_t + (sf)_x = 0, \qquad (2)$$

▶ Equations (2), (1) form the **kinetic equation** for a <u>rarefied</u> soliton gas.

11 40

Kinetic equation for a dense soliton gas: KdV

Kinetic equation for a dense KdV soliton gas as the thermodynamic limit of the KdV-Whitham modulation equations (*El*, *Phys Lett A*, 2003)

$$f_t + (fs)_x = 0, \tag{3}$$

$$s(\eta) = 4\eta^2 + \frac{1}{\eta} \int_0^1 \ln \left| \frac{\eta + \mu}{\eta - \mu} \right| f(\mu) [s(\eta) - s(\mu)] d\mu.$$
(4)

- ► A nonlinear integro-differential equation
- Suggests a general recipe for the construction of soliton kinetic equations for other integrable PDEs via the phase-shift kernel (El and Kamchatnov, PRL 2005). (Watch out for the talk of T. Congy!)
- ▶ Recently derived from a completely different perspective for quantum many-body integrable systems (B. Doyon et. al. PRL (2018) ...)

Spectral theory of breather/soliton gas in the focusing NLS equation

Spectral theory of soliton/breather gas: High Level Description

► Kinematic theory of linear dispersive waves (Whitham) $\psi \sim a(x, t)e^{i\theta(x, t)}$, $k = \theta_x$, $\omega = \theta_t$

 $k_t = \omega_x; \quad \omega = \omega_0(k)$

• An analogue for *n*-phase nonlinear waves $\psi = \Psi(\theta_1, \ldots, \theta_n)$:

$$\mathbf{k}_t = \boldsymbol{\omega}_x; \quad \mathbf{k} = (k_1, \ldots, k_n), \quad \boldsymbol{\omega} = (\omega_1, \ldots, \omega_n).$$

Nonlinear dispersion relations:

$$\mathbf{k} = \mathbf{K}(\Sigma_n), \quad \boldsymbol{\omega} = \mathbf{\Omega}(\Sigma_n),$$

where Σ_n is the "nonlinear Fourier" (IST) band spectrum.

► For a special "thermodynamic" scaling of Σ_n , the limit $n \to \infty$ yields the kinetic equation for the density of states $u(\eta, x, t)$

 $u_t + (us)_x = 0, \quad s(\eta, x, t) = \mathcal{F}[u(\eta, x, t)],$

where $\eta \in \mathbb{C}$, and the functional \mathcal{F} specifies the "equation of state" for a soliton (breather) gas.

Focusing NLS equation: spectral problem

 $i\psi_t + \psi_{xx} + 2|\psi|^2\psi = 0.$

The IST method (*Zakharov and Shabat 1972*) links the NLS time evolution with the time evolution of the scattering data of the linear ZS equation

$$egin{pmatrix} \partial_x+i\lambda&-\psi(x,t)\ -\psi^*(x,t)&\partial_x-i\lambda \end{pmatrix} Y=\mathcal{L}^{(x)}Y=0,$$

where $\psi(x, t)$ is the NLS solution, $\lambda \in \mathbb{C}$ is the spectral parameter, $Y = Y(x, t, \lambda) \in \mathbb{C}^2$.

The spectrum of ψ : $\Sigma(\psi) = \{\lambda \in \mathbb{C} | \mathcal{L}^{(x)} Y = 0, |Y| < \infty \forall x \}$

- Decaying potentials: the spectrum $\Sigma(\psi)$ generally has two components: discrete (solitons) and continuous (dispersive radiation).
- ► Finite-band (finite-gap) potentials ψ_n : $\Sigma_n(\psi) = \bigcup_{i=0}^n \gamma_i$.
 - Multi-phase periodic or quasiperiodic solutions.

$$\psi_n = \Psi(heta_1, \dots, heta_n), \quad \Psi(\dots, heta_j + 2\pi, \dots) = \Psi(\dots, heta_j + 2\pi, \dots).$$
 $heta_j = k_j \mathbf{x} + \omega_j + heta_j^{(0)}$

-Solitons and breathers are some limiting cases of finite-gap potentials

Emergence of finite-gap solutions in semi-classical evolution

$$i\varepsilon\psi_t + rac{arepsilon^2}{2}\psi_{xx} + 2|\psi|^2\psi = 0, \qquad arepsilon \ll 1.$$

El, Khamis and Tovbis, Nonlinearity (2016)

- The solution is locally approximated by finite-gap potentials ψ_n .
- ► The genus (the number of nonlinear oscillatory modes *n*) increases with time.
- Soliton gas at t ≫ 1. Optics experiment: G. Marcucci et al, Nature Comm. (2019)

Spectral portraits of NLS solitons and "standard" breathers

IST spectral parameter $\xi \in \mathbb{C}$

► (a) fundamental soliton

$$\psi_{S}(x,t) = 2ib \operatorname{sech}[2b(x+4at-x_{0})]e^{-2i(ax+2(a^{2}-b^{2})t)+i\phi_{0}}.$$

(b) Akhmediev breather;(c) Peregrine soliton;(d) Kuznetsov-Ma breather.

Tajiri-Watanabe (TW) breather

Two velocities associated with the TW breather

$$egin{aligned} c_g &= -2 rac{\Im[\lambda R_0(\lambda)]}{\Im R_0(\lambda)} \equiv s_{TW}(\lambda), \quad c_p = -rac{2 \Re[\lambda R_0(\lambda)]}{\Re R_0(\lambda)}, \ \end{aligned}$$
 where $R_0(\lambda) = \sqrt{\lambda^2 + q^2}. \end{aligned}$

Akhmediev, Kuznetsov-Ma and Peregrine breathers are particular cases of the TW breather with the double points λ, λ of the spectrum located on the imaginary axis.

Fundamental solitons (TW breathers) are the "particles" in a soliton (breather) gas.

Breather gas examples: "Akhmediev-like" and "Peregrine-like" gases

19 40

Finte-Gap NLS solutions and Nonlinear Dispersion Relations

Finite-gap NLS solutions: basic configuration

Focusing NLS $i\psi_t + \psi_{xx} + 2|\psi|^2\psi = 0$,

▶ Finite-gap solutions ψ_n live on a hyperelliptic genus *n* Riemann surface of

$$R(z) = \prod_{j=0}^{n} (z - \alpha_j)^{1/2} (z - \overline{\alpha}_j)^{1/2}, \quad \alpha_j = a_j + ib_j, \quad b_j > 0,$$

 $z \in \mathbb{C}$: the spectral parameter in the Zakharov-Shabat scattering problem.

- ▶ Assume even genus n = 2N, $N \in \mathbb{N}$.
- ▶ Let all bands lie on a 1D Schwarz-symmetrical curve Γ.

- Exceptional (Stokes) band γ_0 and regular ("solitonic") bands $\gamma_{\pm j}$, $j = 1, \ldots, N$. Can have several Stokes bands.
- $\blacktriangleright\,$ Transition to an odd genus n via closing the Stokes band γ_0

Wavenumbers and frequencies

Introduce a special wavenumber-frequency set:

 $\mathbf{k} = (\mathbf{k}_1, \ldots, \mathbf{k}_N, \tilde{\mathbf{k}}_1, \ldots, \tilde{\mathbf{k}}_N), \ \boldsymbol{\omega} = (\boldsymbol{\omega}_1, \ldots, \boldsymbol{\omega}_N, \tilde{\boldsymbol{\omega}}_1, \ldots, \tilde{\boldsymbol{\omega}}_N)$

► Contrasting behaviours for "solitonic" (k_j, ω_j) and "carrier" (k̃_j, ω̃_j) components:

Soliton/breather limit: collapse a band into a double point:

$$lpha_{2j} o lpha_{2j+1} \; (|\gamma_j| o 0)$$
 \Longrightarrow
 $k_j, \omega_j o 0, \quad ilde k_j, ilde \omega_j = O(1)$

A soliton (breather) on the finite-gap potential background.

Nonlinear dispersion relations for finite-gap NLS solutions

For solitonic components of **k**, ω we obtain **nonlinear dispersion relations** $k_j = k_j(\alpha)$, $\omega_j = \omega_j(\alpha)$ (cf. Flaschka, Forest, McLaughlin CPAM, (1982) for KdV):

$$\sum_{|m|=1}^{N} k_m \Im \oint_{\mathbb{B}_m} \frac{P_j(\zeta) d\zeta}{R(\zeta)} = \pi \Re \varkappa_{j,1},$$

$$\sum_{|m|=1}^{N} \omega_m \Im \oint_{\mathbb{B}_m} \frac{P_j(\zeta) d\zeta}{R(\zeta)} = 2\pi \Re (\varkappa_{j,1} \sum_{k=1}^{2N+1} \Re \alpha_k + \varkappa_{j,2}),$$

$$|j| = 1, \dots, N,$$

where

$$P_{j}(z) = \varkappa_{j,1} z^{2N-1} + \varkappa_{j,2} z^{2M-2} + \dots + \varkappa_{j,2N}$$
$$R(z) = \prod_{|j|=0}^{N} (z - \alpha_{2j})^{1/2} (z - \alpha_{2j+1})^{1/2}$$

and $\varkappa_{i,j}$ are the coefficients of the normalised holomorphic differentials:

$$w_j = [P_j(z)/R(z)]dz, \quad \oint_{A_j} w_j = \delta_{ij}, \quad i, j = 1, \dots, N.$$

Similar nonlinear dispersion relations exist for the carrier components \tilde{k}_i and $\tilde{\omega}_i$.

Thermodynamic limit of finite-gap solutions (Soliton/Breather gas)

Thermodynamic limit

We are interested in a special, large N limit so that $\forall k_j \rightarrow 0$ but $\lim_{N \rightarrow \infty} \sum_{j=1}^{N} k_j = \mathcal{O}(1)$ — the thermodynamic limit

► Introduce

$$\eta_j = \frac{1}{2}(\alpha_{2j+1} + \alpha_{2j}), \quad \delta_j = \frac{1}{2}(\alpha_{2j} - \alpha_{2j+1}), \quad |j| = 1, \dots, N,$$

 η_j are the centres of the bands γ_j and $2|\delta_j|$ the bandwidths.

▶ For the exceptional (Stokes) band γ_0 we have $\delta_0 = \frac{1}{2}(\alpha_1 - \alpha_{-1})$.

Three spectral scalings

Let $N \gg 1$ and assume:

- ► the band centres η_j are distributed along the curve Γ with some limiting density φ(η) > 0, η ∈ Γ.
- ► $|\eta_j \eta_{j+1}| = O(1/N).$

Options for the scaling of the spectral bandwidth $|\delta_j|$:

(i) *Exponential scaling* (general):

$|\delta_j| \sim e^{-N\tau(\eta_j)},$

where $\tau(\mu)$ is a smooth positive function on Γ .

(iii) Super-exponential scaling ("ideal gas"): for any a > 0

 $|\delta_j| \ll e^{-aN}$

(ii) Sub-exponential scaling ("condensate"): for any a > 0

$$e^{-aN} \ll |\delta_j| \ll \frac{1}{N}$$

For all three scalings: $|gap_j| = O(1/N)$ so $|band_j|/|gap_j| \to 0$ as $N \to \infty$: soliton/breather gas limits

Nonlinear dispersion relations for soliton gas

- Assume the exponential spectral scaling |δ_j| ~ e^{-Nτ(η_j)} so that for N ≫ 1 the spectrum is characterised by two positive functions: φ(η) and τ(η)
- ▶ Introduce the scaling for solitonic wavenumbers and frequencies:

$$k_j = rac{\kappa(\eta_j)}{N}, \qquad \omega_j = rac{
u(\eta_j)}{N}, \qquad N \gg 1,$$

where $\kappa(\eta), \nu(\eta) = \mathcal{O}(1)$ are continuous functions on Γ .

► Apply the limit N → ∞ to the finite-gap nonlinear dispersion relations. For soliton gas we obtain (equations for breather gas have similar structure):

$$\int_{\Gamma^+} \ln \left| \frac{\mu - \bar{\eta}}{\mu - \eta} \right| u(\mu) |d\mu| + \sigma(\eta) u(\eta) = \pi \Im \eta,$$

$$\int_{\Gamma^+} \ln \left| \frac{\mu - \bar{\eta}}{\mu - \eta} \right| v(\mu) |d\mu| + \sigma(\eta) v(\eta) = 4\pi \Im \eta \Re \eta,$$

where

- $u(\eta) = \kappa(\eta)\varphi(\eta) > 0$ is the **density of states**,
- $v(\eta) = \nu(\eta)\varphi(\eta)$ —its temporal counterpart,
- $\sigma(\eta) = \frac{2\tau(\eta)}{\varphi(\eta)} \ge 0$ is the "spectral signature" function.

Ideal gas and soliton/breather condensate

Consider the balance of terms in nonlinear dispersion relations for soliton gas

$$\begin{split} &\int_{\Gamma^+} \ln \left| \frac{\mu - \bar{\eta}}{\mu - \eta} \right| u(\mu) |d\mu| + \sigma(\eta) u(\eta) = \pi \Im \eta, \\ &\int_{\Gamma^+} \ln \left| \frac{\mu - \bar{\eta}}{\mu - \eta} \right| v(\mu) |d\mu| + \sigma(\eta) v(\eta) = 4\pi \Im \eta \Re \eta, \end{split}$$

- u → 0, σ → ∞, uσ = O(1): ideal gas of non-interacting solitons (super-exponential spectral scaling); In this limit s(η) = -v/u = -4ℜη.
- ► $\sigma(\eta) \rightarrow 0$, $u(\eta) = O(1)$: "soliton condensate" (sub-exponential scaling, interactions dominate). Fully defined by the spectral locus curve Γ .

Example: bound state soliton condensate

Bound states are N-soliton solutions, in which all solitons travel with the same speed V; w.l.o.g. V = 0.

 $\blacktriangleright \ \Gamma = [-iq, iq]$

▶ The nonlinear dispersion relations for a bound state soliton gas:

$$v(\eta) = 0, \tag{1}$$

$$\int_{-iq}^{iq} \ln \left| \frac{\mu - \bar{\eta}}{\mu - \eta} \right| u(\mu)(-id\mu) + \sigma(\eta)u(\eta) = \pi\Im\eta$$
(2)

For the soliton condensate we have σ = 0 and Eq. (2) can be readily solved (finite Hilbert transform):

$$u_c(\eta) = \frac{-i\eta}{\pi\sqrt{\eta^2 + q^2}}, \quad \eta \in (-iq, iq).$$
(3)

Eq.(3) coincides with the normalised "Weyl" semi-classical distribution of discrete spectrum in a rectangular barrier (box) potential of the hight q.

Watch out for tomorrow's Pierre Suret talk on the bound state soliton condensate and MI.

Kinetic equation for soliton/breather gas

Equation of state for breather (soliton) gas

Eliminating $\sigma(\eta)$ from the nonlinear dispersion relations we obtain the **equation** of state for breather (soliton) gas

$$s(\eta) = s_0(\eta) + \int_{\Gamma^+} \Delta(\eta, \mu) [s(\mu) - s(\eta)] u(\mu) |d\mu|,$$

where $s(\eta) = -v(\eta)/u(\eta)$ is the "tracer" soliton (breather) velocity in a gas. For soliton gas:

$$s_0(\eta)=4\Re\eta; \hspace{1em} \Delta(\eta,\mu)=rac{1}{\pi\Im\eta}\ln\left|rac{\mu-ar\eta}{\mu-\eta}
ight|$$

► For breather gas:

$$s_{0}(\eta) = \Re \eta + \Im \eta \frac{\Re R_{0}(\eta)}{\Im R_{0}(\eta)} = s_{TW},$$
$$\Delta(\eta, \mu) = \frac{1}{\pi \Im R_{0}\eta} \left[\ln \left| \frac{\mu - \bar{\eta}}{\mu - \eta} \right| + \ln \left| \frac{R_{0}(\eta)R_{0}(\mu) + \eta\mu - \delta_{0}^{2}}{R_{0}(\bar{\eta})R_{0}(\mu) + \bar{\eta}\mu - \delta_{0}^{2}} \right| \right]$$

Here $\Delta(\eta, \mu)$ is the position shift for the 2-soliton (2-breather) interaction.

The criticality (condensation) condition revisited

The equation for the density of states of a breather (soliton) condensate can be written as

$$\int_{\Gamma^+} \Delta(\eta, \mu) u(\mu) |d\mu| = 1, \qquad (*)$$

where $\Delta(\eta, \mu)$ is the position shift in the breather-breather (soliton-soliton) interactions, $\eta, \mu \in \Gamma^+$

- ▶ Integral (Fredholm 1st kind) equation for the critical density of states $u(\eta)$
- \blacktriangleright In the case of soliton gas can be solved for certain geometries of Γ^+

Kinetic equation

Consider a weakly non-homogeneous soliton/breather gas with $u = u(\eta, x, t)$, $s = s(\eta, x, t)$. Then it can be shown that the density of states satisfies

 $u_t + (us)_x = 0$

Adding the equation of state

$$s(\eta) = s_0(\eta) + \int_{\Gamma^+} \Delta(\eta,\mu) [s(\mu) - s(\eta)] u(\mu) |d\mu|,$$

we obtain the kinetic equation for breather (soliton) gas.

Remark In the general 2D (spectral) case we replace

$$\int_{\Gamma^+} \ldots |d\mu| \to \iint_{\Lambda^+} \ldots d\xi d\zeta$$

where $\mu = \xi + i\zeta$ and $\Lambda^+ \in \mathbb{C}^+$ is a 2D compact region.

Remarks

▶ Another kinetic equation is obtained for the carrier wave wavumber

 $\tilde{u}_t + \tilde{u}\tilde{s} = 0; \quad \tilde{u}(\eta, x, t) = \tilde{U}[u(\eta, x, t)], \quad \tilde{s} = \tilde{S}[u(\eta, x, t)]$

Velocity of a "trial" soliton/breather with η ≠ Γ propagating through a soliton (breather) gas with the density of states u(η)

$$s(\eta) = rac{s_0(\eta) - \int_{\Gamma^+} \Delta(\eta,\mu) u(\mu) s(\mu) |d\mu|}{1 - \int_{\Gamma^+} \Delta(\eta,\mu) u(\mu) |d\mu|}.$$

► For a soliton with spectral parameter η propagating through the bound state soliton condensate with $\Gamma = [-iq, iq]$ we obtain:

$$s(\eta) = -rac{4\Im\eta\Re\eta}{\Im\sqrt{\eta^2+q^2}}.$$

- an experimentally verifiable quantity.

Some explicit solutions of the kinetic equation

Watch out for the talk by Thibault Congy tomorrow

Multi-component hydrodynamic reductions

Let

$$u(\eta, x, t) = \sum_{j=1}^{M} w^j(x, t) \delta(\eta - \eta^{(j)}),$$

Then the kinetic equation becomes a system of quasilinear conservation laws

$$(w^{j})_{t} + (w^{j}s^{j})_{x} = 0, \qquad j = 1, \dots, M$$

with closure conditions

$$s^{j} = s_{0}^{j} + \sum_{m=1, m \neq j}^{M} \Delta_{jm} w^{m} (s^{j} - s^{m}), \quad j = 1, 2, \dots M,$$

where $s^{i}(x, t) = s(\eta^{(j)}, x, t)$.

► Hyperbolic, linearly degenerate, integrable hydrodynamic type system (*El, Kamchatnov, Pavlov & Zykov, J. Nonlin. Sci 2011*)

Shock tube problem for breather/soliton gas

Consider the two-component reduction

$$(w^{j})_{t} + (w^{j}s^{j})_{x} = 0, \qquad j = 1, 2.$$

$$s^{1} = s_{0}^{1} + \frac{\Delta_{12}w^{2}(s_{0}^{1} - s_{0}^{2})}{1 - (\Delta_{12}w^{2} + \Delta_{21}w^{1})}, \quad s^{2} = s_{0}^{2} - \frac{\Delta_{21}w^{1}(s_{0}^{1} - s_{0}^{2})}{1 - (\Delta_{12}w^{2} + \Delta_{21}w^{1})}.$$

with the "shock tube" initial conditions

$$\left\{ \begin{array}{ll} w^1(x,0)=w_0^1, & w^2(x,0)=0\,, \qquad x<0,\\ w^2(x,0)=w_0^2, & w^1(x,0)=0, \qquad x>0, \end{array} \right.$$

Assume $s_0^1 > s_0^2 > 0$

Numerical sumulations of the soliton gas shock tube problem (KdV) (*Carbone, El and Dutykh, EPL 2016*)

Shock tube problem: weak solution

The weak solution for w^1 and w^2 has a piecewise constant form:

$$w^{1}(x,t) = \begin{cases} w_{0}^{1}, & x < c^{-}t, \\ w_{c}^{1}, & c^{-}t < x < c^{+}t, \\ 0, & x > c^{+}t. \end{cases}$$
(1)
$$w^{2}(x,t) = \begin{cases} 0, & x < c^{-}t, \\ w_{c}^{2}, & c^{-}t < x < c^{+}t, \\ w_{0}^{2}, & x > c^{+}t. \end{cases}$$

where

where

$$w_c^1 = \frac{w_0^1 (1 - \Delta_{21} w_0^2)}{1 - \Delta_{12} \Delta_{21} w_0^1 w_0^2}, \quad w_c^2 = \frac{w_0^2 (1 - \Delta_{12} w_0^1)}{1 - \Delta_{12} \Delta_{21} w_0^1 w_0^2},$$

$$c^- = s_0^2 - \frac{(s_0^1 - s_0^2) \Delta_{12} w_c^1}{1 - (\Delta_{12} w_c^1 + \Delta_{21} w_c^2)}, \quad c^+ = s_0^1 + \frac{(s_0^1 - s_0^2) \Delta_{21} w_c^2}{1 - (\Delta_{12} w_c^1 + \Delta_{21} w_c^2)}.$$

Conclusions

- Nonlinear dispersion relations and kinetic equations are derived for soliton and breather gases of the focusing NLS equation;
- ► The spectral scaling plays crucial role in the balance of terms in the nolinear dispersion relations
- ▶ Sub-exponential scaling corresponds to a soliton/breather condensate

Thank you for your attentíon!