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I Theoretical background:
Bose–Einstein condensates (BECs),
Gross–Pitaevskii model,
Wave turbulence kinetic equation.

I Considering the 3D case:
Condensation process,
WT direct cascade,
Critical Balance,
Bogoliubov turbulence.

I Considering the 2D case:
no BEC in infinite system,
Berezinsky–Kosterlitz–Thouless transition,
quantum vortex dynamics.
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What is a Bose-Einstein condensate?

Boson system in a confining potential.

I Bosons can occupy
the same quantum
state

I E =
∑

k nkEk

I T ∼ 〈E 〉
a

Bose-Einstein condensate and

fluctuations in a confining potential.

I A macroscopic fraction of
particles occupies the lowest
energy level

I Particle wave-functions

overlap each other and

quantum effects become

macroscopic
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E.A. Cornell, C.E. Wieman [JILA] and W. Ketterle [MIT]

Nobel Prize in Physics 2001 “for the achievement of Bose-Einstein
condensation in dilute gases of alkali atoms, and for early fundamental
studies of the properties of the condensates”.
l

Velocity distribution of a gas of rubidium

during condensation [JILA group].
Interference between two BEC

clouds [Ketterle et al.].
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The Gross-Pitaevskii equation model

The many body hamiltonian operator is

Ĥ =

∫
Ψ̂†(x1)

[
p̂2

2m
+ Vext(x1)

]
Ψ̂(x1)dx1

+
1

2

∫
Ψ̂†(x1)Ψ̂†(x2)V (x1 − x2)Ψ̂(x2)Ψ̂(x1)dx12

+ ...

classical analogue

H =
∑

i

[
p2
i

2m
+ Vext(xi )

]
+

1
2

∑
i, j V (xi − xj).

If the system is cold and highly occupied

I Ψ̂(x) = ψ(x) + ˆδΨ(x)

I V (x1 − x2) = 4π~2a
m δ(x1 − x2)

i~∂tΨ̂ = [Ψ̂, Ĥ] leads to Gross-Pitaevskii equation (GPE)

i~∂tψ(x, t) =

(
−~2∇2

2m
+ Vext(x) +

4π~2a

m
|ψ(x, t)|2

)
ψ(x, t)
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i~
∂ψ

∂t
+

~2

2m
∇2ψ − g |ψ|2ψ = Vψ, with g =

4π~2as
m

Setting V ≡ 0, ψ → √ρ∞ ψ, t → ~
gρ∞

t, x → ξ x

i∂tψ +
1

2

( √
2 ~2

mgρ∞
ξ−2

)
∇2ψ − 1

2
|ψ|2ψ = 0 =⇒ ξ =

4
√

2 ~
√
mgρ∞

At scales > ξ the nonlinear term dominates (phonons), at scales < ξ the linear
(kinetic) term becomes more important (free-particle excitations).

i∂tψ + β∇2ψ − α|ψ|2ψ = 0

4He

ξ ∼ Å, L/ξ ' 104 − 105

Only qualitative model for
liquid helium!

Alkali BECs

ξ(m, as , ρ∞), L/ξ ' 1− 102

Very good model
when T ' 0
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i
∂ψ

∂t
+∇2ψ − |ψ|2ψ = 0,

{
M =

∫
|ψ|2dx =

∫
ρdx

H =
∫
|∇ψ|2 − 1

2 |ψ|
4dx

In general two conserved quantities M and H but in one-dimensional
physical space the equation is integrable, infinite conserved quantities!
a

Madelung’s transformation ψ(x, t) =
√
ρ(x, t)e iθ(x,t), v = 2∇θ{

∂ρ
∂t +∇ · (ρv) = 0

ρ
(
∂vj
∂t + vk

∂vj
∂xk

)
= − ∂p

∂xj
+

∂Σjk

∂xk

I p = ρ2 is a pressure term, Σjk = ρ∂
2(ln ρ)
∂xj∂xk

is the quatum stress tensor

I GPE describes an inviscid, irrotational, barotropic fluid.

The non-dimensional GPE is a particular case of the nonlinear Schrödinger
equation, very important model in many physical systems.
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Equilibrium distributions for BECs

For a non-interacting boson system at rest having temperature T
and chemical potential µ:
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Distributions having T = 10 and µ = 10−4.

I Bose-Einstein
statistics

nBE (k) =
1

e
|k|2+µ

T − 1

I Rayleigh-Jeans

nRJ(k) =
T

|k|2 + µ

Bose-Einstein statistics reduces to the Rayleigh-Jeans distribution
for T � |k|2 + µ, we can define then a kmax of validity!
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Kinetic equation and thermodynamic solution

Given nkδ (k− k′) = 〈ψ̃k ψ̃
∗
k ′〉, one finds

∂n1

∂t
= 4π

∫
n1n2n3n4

(
1

n1
+

1

n2
− 1

n3
− 1

n4

)
δ(k1 + k2 − k3 − k4)

×δ(ω1 + ω2 − ω3 − ω4)dk234, ωi = |ki |2

Elastic collision satisfying

resonant conditions

I only resonant interactions{
k1 + k2 = k3 + k4

ω1 + ω2 = ω3 + ω4

I S(t) =
∫

log nkdk, Ṡ(t) ≥ 0

I analogies with Boltzmann integral
I Rayleigh-Jeans thermodynamic

n(k, t) =
T

µ+ a · k + ω(k)
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Steady cascade solutions [D.P., Nazarenko, Onorato, PRA 2009]

i
∂ψ

∂t
+∇2ψ − |ψ|2ψ = F +D

Supposing statistical isotropy in physical space n(k, t) = n(k, t)
Kolmogorov-Zakharov solutions of kinetic equation: constant flux
of energy (direct cascade) and particles (inverse cascade) in GPE

I 2 conserved
quantities, 2 cascades

I direct energy cascade
n1D(k) ∼ k−1

I inverse cascade with
n1D(k) ∼ k−1/3
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Condensate growth [D.P., Nazarenko, Onorato, PRA 2009]
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n1D(k) at different steps.

I forcing at large scales

I hyper-viscosity at small
scales

I strong condensate
c0 = |ψ̃(k = 0)| � |ψ̃(k 6= 0)|

I condensate growth alters
the WWT dynamics

Dispersion relation. Bogoliubov is

ω(k) = c2
0 ± k

√
2c2

0 + k2.
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The WT regime [D.P., Nazarenko, Onorato, PRA 2009]
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n1D(k) spectrum at final stage. The

dashed line is the WWT prediction.

I forcing at large scales

I hyper-viscosity dissipation
at small scales

I friction at scales larger
than forcing to
arrest the inverse cascade

I condensate growth is
stopped

Steady regime which agrees with
WT direct energy cascade pre-
diction.
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The critical balance regime [D.P., Nazarenko, Onorato, PRA 2009]
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I hypo-viscosity at large
scales to arrest the inverse
cascade

I suppression of the
condensate fraction

I wide range of forcing
coefficient: from f0 = 0.05
(A) to f0 = 3 (F)

A scale-by-scale energy balance
between HNL and HLin in Fourier
space can explain n1D ∼ k−2
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Weak wave turbulence for i∂tψ +∇2ψ − |ψ|2ψ = 0

I Wave turbulence regime,
small nonlinearity

∣∣|ψ|2ψ∣∣� ∣∣∇2ψ
∣∣

4-wave interaction resonance processes

∂n1

∂t
=

∫
n1n2n3n4

(
1

n1
+

1

n2
− 1

n3
− 1

n4

)
δ(k1 + k2 − k3 − k4)

×δ(ω1 + ω2 − ω3 − ω4)dk234, ωi = |ki |2, nk ∼ |ψk |2

equilibrium steady state =⇒ Rayleigh-Jeans n(k) = T
ω(k)+µ

I Strong condensate regime
ψ(x, t) = ρ0(t) + φ(x, t), |ρ0| � |φ|
3-wave phonons interaction processes

ωBog (k) = |k|
√

2ρ0 + |k|2 =⇒ |b(k)|2 =
T

ωBog (k)
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Bogoliubov wave turbulence
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[D.P., Nazarenko, Onorato, PRA 2009]

I n1D(k) ∝ k−3/2 on the hypothesis
ak and a?−k independent

I however because the Bogoliubov

modes bk and b?−k are now

independent, one obtains

n1D(k) ∝ k−7/2 as derived in

[Fujimoto & Tsubota, PRA 2015]

[Fujimoto & Tsubota, PRA 2015]
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Recent BEC experiment [Navon et al., Nature 2016]

sketch of the experiment reported spectra
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No BEC in infinite 2D system! [Connaughton et al., PRL 2005]

In the 3D case:

N

V
=

∫ kmax

0

T

k2 + µ
4πk2 dk

= 4πT

[
kmax −

√
µ arctg

(
kmax
√
µ

)]
E

V
=

∫ kmax

0

T

k2 + µ
k2 4πk2 dk

= 4πT

[
k3
max

3
+ µ

3
2 arctg

(
kmax
√
µ

)
− kmaxµ

]

In the 2D case:

N

V
=

∫ kmax

0

T

k2 + µ
2πk dk

= πT log

(
k2
max + µ

µ

)
E

V
=

∫ kmax

0

T

k2 + µ
k2 2πk dk

= πT

[
k2
max − µ log

(
k2
max + µ

µ

)]

I A measure of BEC is the correlation length λc ∼ 1/
√
µ

I In 3D, λc = 0 with a non-zero finite set (N,E ) and TBEC 6= 0.

I In 2D, λc = 0 =⇒ TBEC = 0 or divergent N!

I Rigorous proof using Mermin-Wagner theorem

I The first order correlation function g1(r) = 〈ψ(x)ψ∗(x + r)〉 ∼ e−|r|
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Thermalisation at L = 256 ξ [Nazarenko, Onorato and D.P., PRA 2014]
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Condensate fraction measure [Nazarenko, Onorato and D.P., PRA 2014]
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Two-dimensional quantum vortices

I using Madelung’s transformation ψ =
√
ρe iθ, v = 2∇θ

I a vortex is a hole in the density where phase changes of
∆θ = 2πn, n ∈ N

I C =
∮
v · d l = 2

∮
∇θ · d l = 2∆θ is quantized. For the Stokes

theorem if ∆θ 6= 0 the field ψ goes to zero at vortex core

θ(x, t) around a vortex.
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ρ(x, t) around a vortex.
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An example of 2D dynamics

Density field in a turbulent regime.

I chaotic quantum
vortex dynamics

I nucleation and
annihilation
processes

I clustering

I sound emission

For the forced-dissipated 2D
case and the role played by
vortices refers to [Nazarenko
& Onorato, Physica D 2006]
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The Berezinsky-Kosterlitz-Thouless transition

Ev = 2π ρs log

(
L

ξ

)
S = log

[(
L

ξ

)2
]

= 2 log

(
L

ξ

) =⇒
F = Ev − TS =

T

2

(
ρsλ

2 − 4
)

log

(
L

ξ

)
,

λ =

√
4π

T
is the thermal length

The free energy changes sign at temperature TBKT = πρs !

Schematic picture of BKT transition
[Hadzibabic & Dalibard,

Nuovo Cimento 2011].

I Above TBKT , F < 0 so
proliferation of new vortices
is favourable

I Below TBKT , F > 0 and
vortices form dipoles

I Below TBKT , first order
correlation follows
g1(r) = ρs

(
ξ
r

)α
, α = 1

λ2ρs
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The BKT transition temperature [Nazarenko, Onorato and D.P., PRA

2014]
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Condensate fraction below TBKT , C = 1
ρ̄L2

∫
g1(r)dr ' 2πα/2ρs
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The role of vortices [Nazarenko, Onorato and D.P., PRA 2014]
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Interesting vortex dynamics! [Nazarenko, Onorato and D.P., PRA 2014]

Evolution of the density field for a system with L = 256 and T = 0.50, well

below TBKT . Detected vortices are shown as green and white points depending

on their orientation.
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Conclusions

I In the 3D GP model, BEC spontaneously occurs in infinite
system

I Two weakly nonlinear regimes exist, 4-wave (thermal, no
condensed) regime and 3-wave (Bogoliubov, condensed)
regime, where to observe KZ energy cascade spectra

I no BEC is possible in 2D infinite system, but
(quasi-)condensation is recovered for finite systems

I BKT is the most important transition in 2D, driving also
(quasi-)BEC!

I BKT seems to be size-independent (work in progress)

I vortices around TBKT are not well defined hydrodynamic
objects, intermittent creation and annihilation of dipoles
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