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Bose-Einstein Condensation?:

Velocity distribution of particles in 
ultracold atomic gas taken from 

experimental measurements

• Finite-temperature effects always 
present in atomic BECs

• Need methods to model thermal 
cloud in condensates
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Microscopic Description of the Quantum Gas:

• Our quantum gas is described by many-body wave function
- weakly interacting dilute Bose gas
- s-wave scattering length (a) at low energies
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The Gross Pitaevskii Equation:

• The resulting evolution equation is an NLS equation (defocussing type)

• Gross-Pitaevskii equation includes an external trapping potential

Rotating BEC
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• Successfully predicts many experimental observations 
- (e.g. quantized vortex lattice, grey/dark solitons, etc.)
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i∂
t
ψ = −∇2ψ + γ |ψ |2 ψ +V
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The Gross Pitaevskii Equation:

• The resulting evolution equation is an NLS equation (defocussing type)

• Gross-Pitaevskii equation includes an external trapping potential

Rotating BEC

• Successfully predicts many experimental observations 
- (e.g. quantized vortex lattice, grey/dark solitons, etc.)
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Classical Field Approximation:

• Alternative derivation is to start with second quantized form of Hamiltonian
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• Retain only modes that are macroscopically occupied (no quantum fluctuations)

• At leading order, we obtain GP equation for the classical field ψ 
- so GP equation includes finite temperature effects (at least qualitatively)

• GP equation accurately describes dynamics of condensate at zero temperature
- close to ground state energy
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• Decompose into basis of coherent states such that
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• BEC + low energy excitations are treated as a classical field
• High energy atoms are treated as a thermal bath

- in simplest approximation, we neglect coupling to thermal bath 

• The GP equation for classical fields has two integrals of motion
- number of particles and total energy
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Derivation of Kinetic Description:

• First regime (assume no condensate)

• If   N/V<1, then

• Fourier transforming GP equation  (Ak are Fourier coefficients)   

• Rewrite in interaction picture

  
|ψ |

4
~ 

2
|ψ |

2
, 1

 

∂
t
A
k
+ ik

2
A
k
= 

2 −i

(2π )3
A
k1

*

∫ A
k2
A
k3
δ (k + k

1
− k

2
− k

3
)dk

1
dk

2
dk

3

a
k
(t) = A

k
(t)exp

ik
2
t

 

M
2
(p

1
;p

2
)(t) =

i
2

(2π )6
e
i(k2

2
+k3

2−p2
2−k1

2
)

0

t

∫ M
4
(p

1
,k

1
,k

2
,k

3
)(τ )dτ

⎡

⎣
⎢

⎤

⎦
⎥∫ δ (p

2
+ k1 − k2 − k3)dk123

−
i
2

(2π )6
e
i( p1

2
+k1

2−k2
2−k3

2
)
M

4
(k

2
,k

3
,p

2
,k

1
)(τ )dτ

0

t

∫
⎡

⎣
⎢

⎤

⎦
⎥∫ δ (p

1
+ k1 − k2 − k3)dk123

M
2
(p

1
;p

2
) = ap1

ap2

*• Combine with equation for complex conjugate and average



SIG in Wave Turbulence, University of  Warwick 8-9th May, 2017 9

Kinetic Equation for Four-wave Resonances:
• After closing equations for moments using Wick’s decomposition
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• Solution realized in practice is one that maximises entropy

• Equation admits equilibrium solutions given by

- equi-partition of particle number

- equipartition of energy
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• Note that this is the classical limit of the quantum kinetic equation when nk>>1
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• First derived by Nordheim (1928)

• Solution in this case given by Bose-Einstein distribution
- Rayleigh-Jeans is corresponding classical limit 
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• Rayleigh Jeans distribution is most relevant
- two free parameters: T – ‘temperature’ and µ – ‘chemical potential’



SIG in Wave Turbulence, University of  Warwick 8-9th May, 2017 1111

• Substituting into GP and Fourier transforming we find

Three-Wave Kinetic Equation:
• Second regime (with strong condensate)

• Begin by linearising about condensate solution

- write wavefunction as 
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• Resulting equation has non-diagonal leading order term.

• Diagonalise using (Bogoliubov transformation)

• Leading order behaviour of resulting equation
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• Using weak turbulence theory we can then derive a closed kinetic equation for the 
thermal excitations

- where |Vk1,k2,k3
| denote coefficients of the integral

• Collision integral describes three-wave interactions

• This equation admits a one parameter family of solutions
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• Can model condensate formation from strongly non-equilibrium initial state
– simulates evolution of system following rapid quench below phase transition 

temperature

• For homogenous system in periodic domain
- particles initially distributed uniformly in momentum space

• Accumulation of particles in zero momentum ground state observed
- formation of a condensate

Numerical solution of NLS Equation at High Energies:

Berloff and 
Svistunov 

(2002)

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

1.2

time

n
o
/N

 

 

(N
g
 = 64

3
)

(N
g
 = 32

3
)

(N
g
 = 16

3
)



SIG in Wave Turbulence, University of  Warwick 8-9th May, 2017 1414

• Before condensate formation, 4 wave 
scattering dominates

• Low energies  à breakdown of random 
phase approximation
- phase coherence at low wavenumbers

Relation to Kinetic Equations:

• Leads to condensate growth
- kinetics described by combination of 3/ 4 wave processes
- intermediate regime  à strong turbulence

• Final stage
- 3 wave processes dominate
- weak thermal excitations on strong condensate 
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• System thermalises at long times
– what is equilibrium state as function of T?

• Use integrals of motion with equilibrium distributions
– simulations in finite domain
– consider discrete spectrum for consistency

Properties at Thermal Equilibrium:
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• We have two equations for no and T
- determine no(T)

• Numerical simulations performed with 
different system size but constant number 
density
- relaxation depends on size of system
- but final state function of number density

• Theory shows excellent agreement with 
numerical results

• Simulation parameter
- N/V=0.5

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

<H>/V

n
0
/N

 

 

Theoretical

numerical

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

1.2

time

n
o
/N

 

 

(N
g
 = 64

3
)

(N
g
 = 32

3
)

(N
g
 = 16

3
)



SIG in Wave Turbulence, University of  Warwick 8-9th May, 2017 17

• We have extended results to two component system
- governed by coupled NLS equations

• In non-dimensional form, equations given by 

Extension to Two-Component Nonlinear Schrödinger Equation:
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• Components are in phase mixing regime for 0<α<1
- occupy same region in space

• Kinetic description can be used in this case
- ground states correspond to k=0 modes
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Numerical Results for Two-Component System:
• For intermediate energies, only one 

component condenses

First component

Second component

(a) t =100 (b) t =600

(a) t =100 (b) t =600

Particle distribution in momentum 
space
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(HS & Berloff, Physica D, 2009)
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Distribution of spectral number densitiesDetermination of Equilibrium State:
• We can compute equilibrium properties of 

system from constants of motion
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• Homogenous Bose gas oversimplified

• How can we extend to an inhomogeneous system?
- relevant to a BEC in a trap

• Global Fourier transform inapplicable  

Condensates in a Trap:

i∂
t
ψ = −∇2ψ + γ |ψ |2 ψ +V

ext
ψ ,

• Many experiments are in Thomas-Fermi regime
- Laplacian term (kinetic energy) small 
- smooth potential  

Lvov et al. 2001

• Scale separation between excitations/ condensate
- excitations ( ~ l) on top of condensate ( ~ L)
- small parameter ε ~ l/L <<1

• Generalize equations to wave-packets
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• Outside condensate
- n corresponds to local atomic modes

• Inside condensate
- ñ corresponds to local Bogoliubov modes

Wavepacket Dynamics:

• Linear dynamics governed by wavepacket trajectories

D
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= ∂
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quantum mechanics)
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(Local Bogoliubov 
dispersion relation)

• Matching region is more subtle 
- will not consider here!
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Kinetic Equations in Inhomogeneous BECs:

• Outside condensate

- equilibrium solution

• Inside condensate

- equilibrium solution
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• Thermal cloud maximum at edge of condensate
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Numerical Modelling of Trapped BEC:

• A key feature of any classical field model of a finite temperature BEC is that 
it suffers from an ultraviolet catastrophe

• In numerical simulations this is regularised by numerical discretisation

- e.g. grid spacing in finite difference schemes

- mode truncation in spectral methods

• In order to faithfully represent the macroscopically occupied modes, need to 
truncate the basis
- retain modes up to energies where Bose-Einstein and Rayleigh-Jeans 

distributions diverge

- this criterion is based on obtaining the correct equilibrium properties 

- BUT details of non-equilibrium relaxation can depend on this 

• Motivates a spectral numerical scheme for direct control over energy cut-off
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Generalized Laguerre Basis: (HS, J. Comp. Phys, 258, 185, 2014)
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Numerical Simulations of Trapped BEC:
• We consider spherically symmetric harmonic trap

V
ext
(x) =

1

2
ω 2
(x

2
+ y

2
+ z

2
)

increasing time

• We used spherical harmonics with Laguerre polynomials in radial direction

• Strang operator splitting used for time integration
- second order accurate in time
- respects Hamiltonian structure of system (stable)
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• How can we extract condensate?
– does not coincide with a mode from our basis as in homogeneous system

Computing the Condensate Fraction:

• Use Penrose-Onsager definition of BEC (1956)
– applicable even at non-equilibrium 
– compute the density matrix
– replace ensemble average with time average (ergodicity hypothesis)

• Define the density matrix as

ρ(x, ′x ) =
1

T
ψ (x,τ )ψ *

(x ',τ )dτ
t−T /2

t+T /2

∫

• Can decompose into eigenmodes ψi(x,t)
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• Profiles of condensate and non-condensate fraction

• Thermal cloud shows 
expected asymptotic 
behaviour from theory

- Wavepacket formalism gives the following distribution for 
the excitations
- outside condensate

- inside condensate

n(k,x) =
T

k
2 +V

ext
(x) − µ

 

n(k,x) =
T

k k
2
+ 2γ (n

o
/V )

(HS, Phys. Rev. A, 85, 063622, 2012)
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Results from the 2D Gross-Pitaevskii Model (Reflective Boundaries):

• At intermediate times, time-averaged stream-function recovers dipole state
time averaged streamfunction

• We simulate system in square domain with no-normal flow boundary conditions 
with 2D Gross-Pitaevskii equation

i!∂ψ
∂t

=
−!2

2m
∇2ψ + gψ 2

ψ g = 8π!2as
maz

,az =
!
mωz



SIG in Wave Turbulence, University of  Warwick 8-9th May, 2017 30

• Long time-averaged streamfunction now reveals monopole state

- we observe strong symmetry breaking in the circulation with monopole

- positive vortices near the boundaries screen negative vortices from 
annihilating with the boundaries 

time averaged streamfunction
(HS & Maestrini, Phys. Rev. A, 94, 043642, 2016)
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• Introducing a streamfunction
(order parameter for large scale flow)

- where                        is the scaled 
streamfunction,

- is the scaled inverse 
temperature

- nontrivial solutions only for negative 
temperatures                          

31

Boltzmann-Poisson Equation:
∇2ψ = −ω

Streamfunction contours for circular domain

Averaged streamfunction 
from our numerical 

simulations
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Mean Field Modes in a Square Potential:
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Mean Field Modes in a Square Potential:
• Mean field solutions can be distinguished by their 

entropy, energy and angular momentum

• There is a competition between different mean field solutions
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Ẽ

S
/Ẽ
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• Confirms emergence of quasiclassical regime and Onsager condensation in 
quantum turbulence

34

• Emergent monopole flows also agree with observations made on 2D turbulence in 
classical experiments

Comparison with Classical Experiments:

Shats, Xia, 
Punzmann (2005)
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Non-equilibrium Phenomena:

• Spectra of relaxation dynamics in 2D periodic system reveals two co-existing 
regimes

- shallow spectrum corresponds to weak wave turbulence prediction

- steeper spectrum is a strong wave turbulence regime

- steeper spectrum owes its existence to vortices
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Computing Occupation Number Spectra in Square Domain:

• We recover the spectrum for a random distribution of vortices
- modified at low k due to vortex clusters 

• Spectral contributions to kinetic energy can be decomposed into components



SIG in Wave Turbulence, University of  Warwick 8-9th May, 2017 37

Numerical Evaluation of Spectra:

• Signature of condensate clearer in “quantum definition” of kinetic energy

• Alternatively, we can define a classical analogue of kinetic energy spectrum
- can not be measured in practice
- is not related to momentum distribution

• We recover spectrum for random distribution 
of vortices
- modified at low k due to vortex clusters 
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Summary:
• Nonequilibrium phenomena in BECs important for finite temperature models

• Statistical interpretation of NLS leads to kinetic equations (two regimes identified)
- weak nonlinearity      (low number densities)
- strong condensate      (N-no)/N<<1
- changes kinetics from four wave to three wave interactions 

• In wide range of parameter regimes non-equilibrium relaxation tends to lead 
to two spectra coexisting at same time
- can be attributed to weak wave turbulence of compressible modes
- strong turbulence related to presence of vortices 

• How can we extend wave turbulence to model this important generic 
scenario that arise in Bose gases?


