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Bose-Einstein Condensation?:
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Microscopic Description of the Quantum Gas:

 Our quantum gas is described by many-body wave function W(x,,--,x,)
- weakly interacting dilute Bose gas

- s-wave scattering length (a) at low energies

2
¥, =HY, H = f ZV2+27th2az5(x -X,)
i,j=1
i#]

« In fully condensed state, bosons are in single particle state

. N
T owewrlte  y(x ...x,)= qu(xi), where f|(/b(x)|2 dx = 1.
=1

N(N =1), 4 Nh* .2 gN* .4 ,
= J{ Sy + NN o [ S v+ D s, o= ama

 Introducing the macroscopic wave-function w(x)=N"’¢(x) we have

Tyl s Sl
H= [l Vol + 5wl ax
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The Gross Pitaevskii Equation:

» The resulting evolution equation is an NLS equation (defocussing type)

» @Gross-Pitaevskii equation includes an external trapping potential

2

h
ihdyy =——Vy+gly Py +V, 1y,
2m

* Successfully predicts many experimental observations

- (e.g. quantized vortex lattice, grey/dark solitons, etc.)

Rotating BEC
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The Gross Pitaevskii Equation:

» The resulting evolution equation is an NLS equation (defocussing type)

» @Gross-Pitaevskii equation includes an external trapping potential
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* Successfully predicts many experimental observations

- (e.g. quantized vortex lattice, grey/dark solitons, etc.)

Rotating BEC
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Classical Field Approximation:

* GP equation accurately describes dynamics of condensate at zero temperature
— close to ground state energy

« Alternative derivation is to start with second quantized form of Hamiltonian

h2V2 A A
H=[y (x){ (x)} (x)dx+E j dx [ dx (g (x)3 (x = X W (O (x),
« Decompose into basis of coherent states such that
Wx,1) = ¥ 4 0p,x) = &)=Y a,Op,&),  aaln)=nln), n>1

« Retain only modes that are macroscopically occupied (no quantum fluctuations)

« Atleading order, we obtain GP equation for the classical field y

- so GP equation includes finite temperature effects (at least qualitatively)
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« BEC + low energy excitations are treated as a classical field
* High energy atoms are treated as a thermal bath
— 1n simplest approximation, we neglect coupling to thermal bath

______ g___r__.

c-field Region

\

* The GP equation for classical fields has two integrals of motion

— number of particles and total energy

N:jh//l2 dx H=_[(|Vl//|2+%|1//|4+Vext|l//|2)dx
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Derivation of Kinetic Description:
» First regime (assume no condensate)
« If N/V<l,then lyl'~€elyl, exl

* Fourier transforming GP equation (A, are Fourier coefficients)

—I

2m)’

A, +ik*A, =¢é A, A A 5K +K —K, —K;)dk dk,dk,

« Rewrite in interaction picture a (1) = A (t)expikzt

« Combine with equation for complex conjugate and average M, (p,;p,) = <apla;2>

t

i62 FOC k2= p2—k2
Ma(pip)(0) = o [l Je S Om, (p, K, k, Kk )(T)dr B(p, +k, —k, —k;)dk,,,
0

C@en)°Yl

0

€ t' s 2072 72 42
> J.|: e M, (k2,k3,p2,k1)(7:)d7:}5(p1 +k, —k, —k;)dk,,,
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Kinetic Equation for Four-wave Resonances:
« After closing equations for moments using Wick’s decomposition
on A1
1 4
8; =c o) I[nklnkznk3 +n, e m — 0 g — nplnklnkz]
X 5(1712 + k12 o k22 o k§)5(p1 + k1 o kz o k3)dk123

e Equation admits equilibrium solutions given by

— equi-partition of particle number 7, = constant

— equipartition of energy n, =

* Solution realized in practice is one that maximises entropy

S = [In(n,)dk

SIG in Wave Turbulence, University of Warwick 9 8-9th May, 2017



« Rayleigh Jeans distribution 1s most relevant

— two free parameters: T — ‘temperature’ and p— ‘chemical potential’

* Note that this 1s the classical limit of the quantum kinetic equation when n,>>1

on, , 4&

o n)
X 5(]912 + k12 o k22 o k§)5(p1 +k1 —k2 _k3)dk123

[y, + Dy + Dnons =y my (g, + Dy, +1) |

» First derived by Nordheim (1928)

* Solution in this case given by Bose-Einstein distribution

- Rayleigh-Jeans is corresponding classical limit
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Three-Wave Kinetic Equation:

e Second regime (with strong condensate)
* Begin by linearising about condensate solution

— write wavefunction as W=+ A = [\/Z‘S(k) N Ak(t):le—inot

* Substituting into GP and Fourier transforming we find

3,A +i(k>+2n)A +in A =€ (2_’)3 [A, A A, 5(k+k, —k, —k;)dkdk,dk,
71- 3

« Resulting equation has non-diagonal leading order term.

« Diagonalise using (Bogoliubov transformation)

* Leading order behaviour of resulting equation

0,d, = —iQU)aAt)+--, Qk)=kyJk>+2y(n, /V)
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« Using weak turbulence theory we can then derive a closed kinetic equation for the
thermal excitations

Jt
2(~ ~ ~ ~ ~ ~
- .7'L'f Vkl K.k, Nk, Nk, + Nk Nk, — Nk/k, )6(le - g2k - Qk2 )5(k1 -k - kz)deZ

2/ ~ ~ ~ o~ ~ o~
7 [WViesso| (070 = i, = Jo@, -9, -, )0k-k -k,)dk,

- ﬂf sz kK ;lkl ;lkz + ;lk;lkz - ;lk;lkl )(S(gzk2 - Qk - le )6(k2 - k - kl )dk12

- where |V denote coefficients of the integral
kp-ko.ks

» Collision integral describes three-wave interactions

» This equation admits a one parameter family of solutions

T
Y kK 2y (n, V)

n
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Numerical solution of NLS Equation at High Energies:

* (Can model condensate formation from strongly non-equilibrium initial state

— simulates evolution of system following rapid quench below phase transition
temperature

* For homogenous system in periodic domain

— particles initially distributed uniformly in momentum space

C__(N_=64)
1.2 O
(N =329
1F — (N = 169 i
s ettt
Berloff and
Svistunov
(2002)
OO 560 1 ObO 1 5‘00 2600 25‘00 3600 3500

time

e Accumulation of particles in zero momentum ground state observed

— formation of a condensate
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Relation to Kinetic Equations:

0.8

—— Condensate mass fraction

0.7r

» Before condensate formation, 4 wave
scattering dominates

 Low energies = breakdown of random
phase approximation

— phase coherence at low wavenumbers 0

0 500 1000 1500 2000 2500 3
time

00 3500 4000

» Leads to condensate growth
- kinetics described by combination of 3/ 4 wave processes

- intermediate regime > strong turbulence

« Final stage
- 3 wave processes dominate

- weak thermal excitations on strong condensate
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Properties at Thermal Equilibrium:

* System thermalises at long times

— what 1s equilibrium state as function of T?

« Use integrals of motion with equilibrium distributions
— simulations in finite domain

— consider discrete spectrum for consistency

S L K yn IV)
N=no+2<akak>=no+2k\/k2+2yn v

T(k>+yn, /V)
=n +
’ Z Q* (k)

| .
H=W[N2+(N—n0)2]+Tzl

k
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. | | | | T[N =629

* We have two equations for n, and T 1.2 N o
-9

— determine n(T) i — 71

* Numerical simulations performed with

different system size but constant number
density

- relaxation depends on size of system

— but final state function of number density ~ %~ s0 1000 1500 2000 2500 3000 3500

time

—— Theoretical
O numerical

e Simulation parameter "I
- N/V=0.5 o8l

Z
~o 0.61
c

* Theory shows excellent agreement with 0.4

numerical results
0.2r
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Extension to Two-Component Nonlinear Schrodinger Equation:

* We have extended results to two component system
- governed by coupled NLS equations

* In non-dimensional form, equations given by

0,4, ==V + 1y, Py +aly, Py,
0,4, ==V, +ly, Py, +aly, Py,

« Components are in phase mixing regime for 0<a<l

— Ooccupy same region in space

« Kinetic description can be used in this case

- ground states correspond to k=0 modes
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Numerical Results for Two-Component System:

iy, ==V +lw, Py +aly, Py, For intermediate energies, only one
. > ) 1 ’ , 1 component condenses
0, =-Vy,+ly, "y, +aly, "y,

(HS & Berloff, Physica D, 2009)

Particle distribution in momentum
space

(a) t =100

(b) t=600
First component

(a) t =100 (b) t =600

Second component

18
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Distribution of spectral number densities

Determination of Equilibrium State: e |
© component 1 (theoretical)
oqe . . A t 2 (th tical
« We can compute equilibrium properties of  combonont 1 (numerioal)
. 10" | ——component 2 (numerical) ||
system from constants of motion
2 ? §1o°
N, = [, P dx, N, = [ly,ldx :
- , 1 4 2 2 107}
H={ E IV, | +5|1p,.| +aly, Fly, P dx
i=1
107 ‘
1 T T 10'1 100 101
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0.8 \ N . 10 ‘
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.. 0.5¢ | S
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Y o5 107+
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v
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<H>/V One component condensed
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Condensates 1n a Trap:

« Homogenous Bose gas oversimplified

 How can we extend to an inhomogeneous system?

— relevant to a BEC 1n a trap 0w =V +ylyPy+V 1y,
» Global Fourier transform inapplicable
* Many experiments are in Thomas-Fermi regime

— Laplacian term (kinetic energy) small
- smooth potential

» Scale separation between excitations/ condensate

— excitations ( ~ 1) on top of condensate ( ~ L)

Lvov et al. 2001

— small parameter € ~ I/L <<1

Generalize equations to wave-packets
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Wavepacket Dynamics:

Linear dynamics governed by wavepacket trajectories

D =0, + XV + k-ak, X = 0,0, k=-Vo

Outside condensate

— n corresponds to local atomic modes

_ g2 (Ehrenfest theorem in
Din(x k1) =0, O =k + Vo, (X,0) quantum mechanics)

Inside condensate

— 7 corresponds to local Bogoliubov modes

~ > (Local Bogoliubov
D a(x,k,t) =0, W = k\/k +2y(n, V) dispersion relation)

Matching region is more subtle

— will not consider here!
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Kinetic Equations in Inhomogeneous BECs:

* Outside condensate (1 1 1 1)
Dn, = Cfnkn1n2n3l\ +———- Jé(k +k, -k, -k,)

n, n. n, ny

x 0(w, (X) + w,(X) - 0, (X) — 0,(x))dK,,,

T
k* + Vext(x) —u

- equilibrium solution  ,(k x) =

» Inside condensate
2 (/ ~ ~ ~ o~ ~ o~
D, = nf‘vk,kl K, ‘ (”k1 Rk, = Ak Nk, — NkMNk, )6(91( - le - ka )o(k -k, -k,)dk,,

2(~ ~ ~ o~ ~ ~
- ﬂff Vkl k. k, (nkl Nk, + NkNk, — Nk Nk, )6(g2k1 - Qk - ka )6(k1 -k - k2 )dk12

2(~ ~ ~ ~ ~ o~
- ﬂf sz KUK, (nkl nkz + nknkz - nknk1 )6(Qk2 - Qk - le )6(k2 - k - kl)dk12

T T
QK X)  kyk>+2y(n, /V)

— equilibrium solution 7k, x) =

e Thermal cloud maximum at edge of condensate
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Numerical Modelling of Trapped BEC:

« A key feature of any classical field model of a finite temperature BEC is that
it suffers from an ultraviolet catastrophe

e In numerical simulations this is regularised by numerical discretisation
- e.g. grid spacing in finite difference schemes
— mode truncation in spectral methods

* In order to faithfully represent the macroscopically occupied modes, need to
truncate the basis

- retain modes up to energies where Bose-Einstein and Rayleigh-Jeans
distributions diverge

— this criterion 1s based on obtaining the correct equilibrium properties

- BUT details of non-equilibrium relaxation can depend on this

« Motivates a spectral numerical scheme for direct control over energy cut-off
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Generalized Laguerre Basis: (HS, J. Comp. Phys, 258, 185, 2014)

i _— 1 ——
— ) ‘ — i)
- - -3 () - - -1 ()
0.5¢ 'r‘\ o Zeroes of &% (r%) || 051 ¢ o Zeroes of g5 (r%)
& x  Zeroes of g% (r?) & \ x Zeroes of @i (r?)
% = i
+ O w0 O A AKARASARAX =
-05 -05
0 2 4 6 . 8 10 12 14 0 2 4 6 8 10 12 14

(a) Profiles and zeroes of polynomials for component 1 (6; = 1) corre-

(b) Profiles and zeroes of polynomials for component 1 (6; = 1) corre-
sponding to ¢, (r) and ¢}, (r).

sponding to ¢7,(r*) and ¢57.(F).

s () eiis ()
- = =33 (r/8) - =~ h3(r/8)
o 0.5 o Zeroes of ¢\, (r?) 3 0.5} o Zeroes of g (r%)
— « Zeroes of @i (r?/8) -~ « Zeroes of @22 (r’ /)
. b
% 0 e %0
" o
-0.5 -0.5¢} 1
0 2 £ 6 8 10 12 14 0 2 £ 6 8 10 12 14
r r
(c) Profiles and zeroes of polynomials for components 1 (6; = 1) and (d) Profiles and zeroes of polynomials for components 1 (; = 1 ) and
2 (82 = & = 1.667) for ¢f-7,(r*) and 57, (r*/6). 2 (62 = 6 = 1.667) for %, (r*) and ¢53(r2/8).

Figure 2: Comparison of different generalised-Laguerre polynomials go:;f" (r*/64) of degree k and order  for component e in 3D.
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Numerical Simulations of Trapped BEC:

/

i

= &

yF = N

. . . . =
*  We consider spherically symmetric harmonic trap /////////////jj//////f%% §§§\\\\\§\\\\\\\\\\\\\
Vel gy B ¥ @
« Strang operator splitting used for time integration \\\\\%{\{&&\Q@i&i@% %%%ﬁ}ﬁ////////g%///////////

L \ =
— second order accurate in time \\\\\\\\\\\\\

y
N
-
“

/
A\
IR

- respects Hamiltonian structure of system (stable)

|

We used spherical harmonics with Laguerre polynomials in radial direction

Increasing time
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Figure 13: Cross-sectional denisty profiles of turbulent condensate state for case with {y°? = 12000, A, = 0.,Q. = 0}.

(a) t=0. (b) t=1.6 (c) t=3.2 (d) =48

Figure 14: Condensate isosurface corresponding to || = 0.025 showing relaxation of turbulent vortex tangle with time for [y = 12000, 4,, =

0., Q. = 0}. The isosurface contouring is given by the function v where r is the radius measured from the centre of the condensate and therefore
reflects the distance that different isurfaces are located from the centre of the trap.
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Computing the Condensate Fraction:

How can we extract condensate?

— does not coincide with a mode from our basis as in homogeneous system

Use Penrose-Onsager definition of BEC (1956)
— applicable even at non-equilibrium
— compute the density matrix

— replace ensemble average with time average (ergodicity hypothesis)

Define the density matrix as

t+T/2

— | !
,O(X,X ) = F f UJ(X,T)UJ (X aT)dT

t-T/2

Can decompose into eigenmodes v (X,t)
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 Profiles of condensate and non-condensate fraction

- Wavepacket formalism gives the following distribution for
the excitations

. 025| T T T ; T
- outside condensate 0.025 ‘

T + mno (numerical BE)

s np (numerical BE)

n(k,X) = k2 % 0 e e ng (numerical RJ)
+ V. (X) —Uu R 0.02 o np (numerical RJ - cutoff 1)
o np (numerical RJ - cutoff 2)

o no (analytical)
- 1nside condensate o - - -ng (analytical - cutoff 1)
o O.TE 0.o01t5 X | nr (analytical - cutoff 2) I
T ? i“ X 10_3
~ g [
n(k,X) = > % 5 0.01F e-o-eo-eG-OO—Oge-“% |
kyJk> +2y(n, | V) 0. ICh
arne® “ sz

0.005} S :

-
e Thermal cloud shows 0.0 : : T

: F0RSPRITRY: ©
expected asymptotic 0, - ﬁﬁﬁ%’%ﬁ—eﬁMwS
behaviour from theory o . _ r_ A
0 2 4 6 8 10

radius
(HS, Phys. Rev. A, 85, 063622, 2012)

SIG in Wave Turbulence, University of Warwick 28 8-9th May, 2017



Results from the 2D Gross-Pitaevskii Model (Reflective Boundaries):

« We simulate system in square domain with no-normal flow boundary conditions
with 2D Gross-Pitaevskii equation

. 0 -h* _, 2 J8rhla h
ot m ma, mao,
Nt =28 N~ = 23, frame=800
'_",h . - ; % ii 3 o) [ o
BT w5 : o . o o
5 T o ‘_-,» o 99 5o 5
i o
. ,.'"' ‘ﬂ - . ) o < Oo (o] O
. - L o 0 0©
O 2 oy o © o°
oy s A A o
't'._‘.:"‘ ; A -~ (o] o O
e L 0o o O
Xy * * i 9 o O =
£t » ¢ ‘ o 0 o
. : : o ° O
bRy, ’3 . s’ OOO o o Oo

time averaged streamfunction
At intermediate times, time-averaged stream-function recovers dipole state
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N*T =13, N~ = 14, frame=3200

. " o) s
. g - O (o]
» - % 0O 0 o
- P O o
> ¥ < o (] o
» s
» " g o o o
- 0
- (o]
. 0
¥ s
- * O
- *y o 0 o°

. time averaged streamfunction
(HS & Maestrini, Phys. Rev. A, 94, 043642, 2016)

* Long time-averaged streamfunction now reveals monopole state
— we observe strong symmetry breaking in the circulation with monopole

— positive vortices near the boundaries screen negative vortices from

annthilating with the boundaries
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Boltzmann-Poisson Equation:

* Introducing a streamfunction Vzl/J = —)
(order parameter for large scale flow)

V2\I!+ \? eXp(\P) . exp(—\If) ] :O,
(exp(¥))  (exp(—V))
—  where ’Yﬁw = \If, 1S the scaled
streamfunction,
- M?/2=—N~?8/D, is the scaled inverse
temperature

- nontrivial solutions only for negative
femneratures

(b)

simulations

Streamfunction contours for circular domain

Averaged streamfunction
from our numerical —

DATE: OCTOBER 2013

' ' NEGATIVE TEMPERATURE GROSS-PITAEVSKII STATES
SELF-CONSISTENT VORTICES

ORDER EMERGING FROM CHAOS:
ONSAGER VORTICES AND NEGATIVE TEMPERATURE
STATES IN A QUANTUM TURBULENT SUPERFLUID

Tapio Simula', Matthew J. Davis? and Kristian Helmerson'
'School of Physics, Monash University, Victoria 3800, Australia
2School of Mathematics and Physics, The University of Queensiand, Queensiand 4072, Austral

INITIAL NUMBER OF VORTICES: N = 80

FINAL NUMBER OF VORTICES: N = 20
SYSTEMRADIUS: R, = 12.5 @
AXIAL THOMAS-FERMIRADIUS: R, = 1.9 a,.

CHEMICAL POTENTIAL: 1 = 9.3 Aoy

VA MONASH University  [J%( THE UNIVERSITY
@ school of Physics VOr QUEENSLAND

\\\\\\\
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Mean Field Modes in a Square Potential:

VA
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Mean Field Modes in a Square Potential:

* Mean field solutions can be distinguished by their
entropy, energy and angular momentum

-180 T T T T T T T
A2 =11.5

—o—Dipole —e—Monopole —o—Diagonal Dipole
-185F -

~190F -
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- N
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Comparison with Classical Experiments:

 Emergent monopole flows also agree with observations made on 2D turbulence in
classical experiments

N 77—\ 10°F R:
=\ AN
77 %) LAt T -
;"/",r‘: ;’// ;Q(\‘\ Al '} .“ E : TE, 0 : d Shats’ Xla,
\ AR W : ! = _I :1 Bf_l
N L I T a3 Ry Punzmann (2005)
e ey ) El r @
e ! m ! k
=N 109 ke, 109 'k L €8 |

* Confirms emergence of quasiclassical regime and Onsager condensation in
quantum turbulence
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Non-equilibrium Phenomena:

* Spectra of relaxation dynamics in 2D periodic system reveals two co-existing
regimes

— shallow spectrum corresponds to weak wave turbulence prediction
— steeper spectrum is a strong wave turbulence regime

— steeper spectrum owes its existence to vortices
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Computing Occupation Number Spectra in Square Domain:

* We recover the spectrum for a random distribution of vortices

— modified at low k due to vortex clusters
E = f (IV|*)dxdy
(0,0]
= / k*(|a(K)|>)d*k = 27 / k>n(k)dk,
0
where n(k) = 1/Q2x) [ (ja(k)|*)d6; and

1 .
a(k) = Fly(r] = - / e KTy (r)dr.

* Spectral contributions to kinetic energy can be decomposed into components

ES = f (7w (0¥ )d%k = f Eokedk.  Egp= f (F IV V)12 )d?k

0
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Numerical Evaluation of Spectra:

« Alternatively, we can define a classical analogue of kinetic energy spectrum

— can not be measured in practice 10 |
, L > Total KE
- is not related to momentum distribution _ - Classical Incomp. KE
107 o Quantum Incomp. KE||
C 2\ 42 > o 2 8
Ey= f (@)v(r)|“)d“r = j; dk j(; (la(k)|~)kdby 0 e ey
C 2\ 12 £10° | e
ES, = [ (v yp@mR)de
00 27T _ 00
ES, = f dk | (iK)2)kd6y = f Ecikedk. |
0 0 0
100 2 l 1 0
SUUCTRNY 10° 10 10
*  We recover spectrum for random distribution k
of vortices (a) Occupation Number Spectra

— modified at low k due to vortex clusters

« Signature of condensate clearer in “quantum definition” of kinetic energy
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Summary:

Nonequilibrium phenomena in BECs important for finite temperature models

Statistical interpretation of NLS leads to kinetic equations (two regimes identified)
- weak nonlinearity  (low number densities)
— strong condensate  (N-n_)/N<<I

— changes kinetics from four wave to three wave interactions

In wide range of parameter regimes non-equilibrium relaxation tends to lead
to two spectra coexisting at same time

- can be attributed to weak wave turbulence of compressible modes

- strong turbulence related to presence of vortices

How can we extend wave turbulence to model this important generic
scenario that arise in Bose gases?
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