

Kelvin-wave turbulence theory for small-scale energy transfer in quantum turbulence

Jason Laurie

Nonlinearity and Complexity Research Group Aston University, UK

Collaborators

A. Baggaley L. Boué

R. Dasgupta V. L'vov

S. Nazarenko I. Procaccia

O. Rudenko

Outline

I. Introduction

· Classical vs. quantum turbulence

II. Kelvin Wave Turbulence Theory

 Hamiltonian description, resonant wave interactions, kinetic equations, locality

III. Numerical Simulations

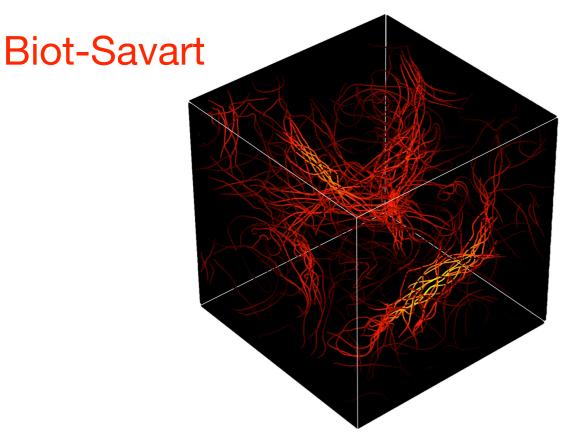
Biot-Savart and Gross-Pitaevskii equations

Theoretical Challenges in Wave Turbulence Warwick University, 8th May 2017

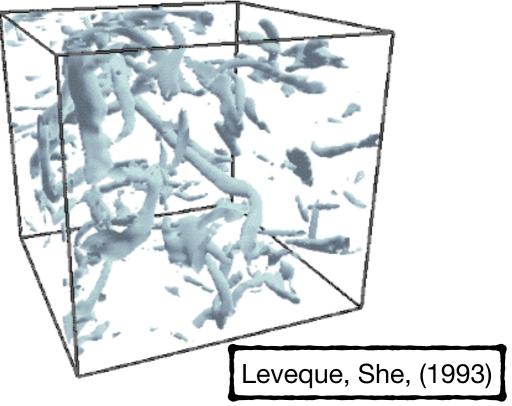
Turbulence at Large Scales

Polarized vortex bundles and K41

- Superfluid helium-4 has a two-fluid description of a viscous normal fluid coupled to an inviscid superfluid
- At 0 Kelvin, helium-4 becomes a pure superfluid
- Similar characteristics appear in BECs
- In quantum fluids, vorticity is confined on zero density defects (identically thin vortex lines) taking only discrete values of circulation
- Analogies to classical vortex tubes appear through local polarization of quantum vortex lines (bundles)



Navier-Stokes

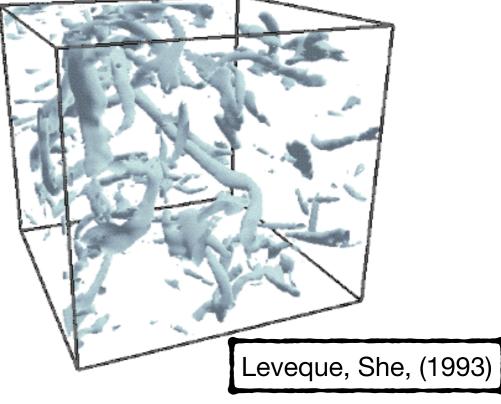


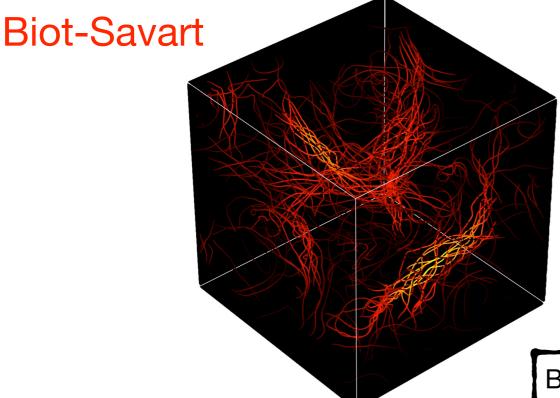
Turbulence at Large Scales

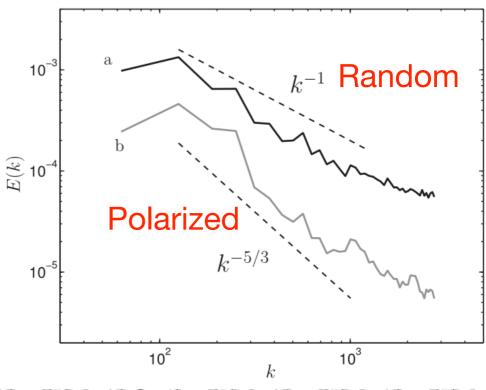
Navier-Stokes

Polarized vortex bundles and K41

- Superfluid helium-4 has a two-fluid description of a viscous normal fluid coupled to an inviscid superfluid
- At 0 Kelvin, helium-4 becomes a pure superfluid
- Similar characteristics appear in BECs
- In quantum fluids, vorticity is confined on zero density defects (identically thin vortex lines) taking only discrete values of circulation
- Analogies to classical vortex tubes appear through local polarization of quantum vortex lines (bundles)



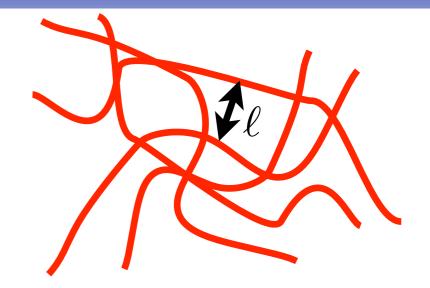




Baggaley, JL, Barenghi, Phys. Rev. Lett. 109, 205304, (2012)

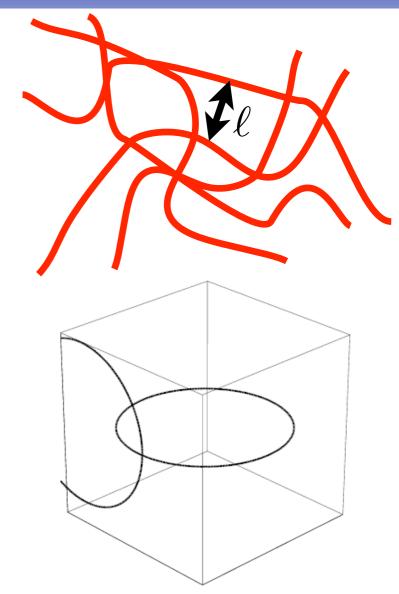
Quantum vortex reconnections

- The classical-quantum vortex bundle analogy breaks down at scales near or below the inter-vortex scale ℓ
- Quantum vortex reconnections become important for the redistribution of energy



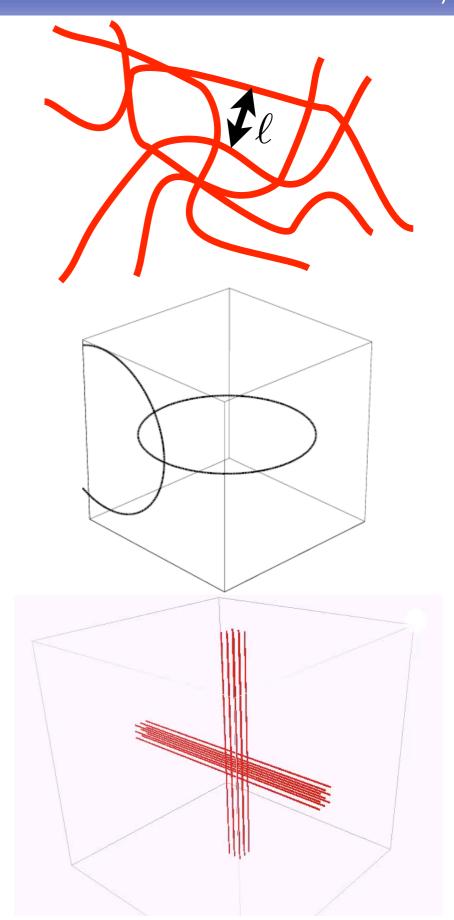
Quantum vortex reconnections

- The classical-quantum vortex bundle analogy breaks down at scales near or below the inter-vortex scale ℓ
- Quantum vortex reconnections become important for the redistribution of energy



Quantum vortex reconnections

- The classical-quantum vortex bundle analogy breaks down at scales near or below the inter-vortex scale ℓ
- Quantum vortex reconnections become important for the redistribution of energy

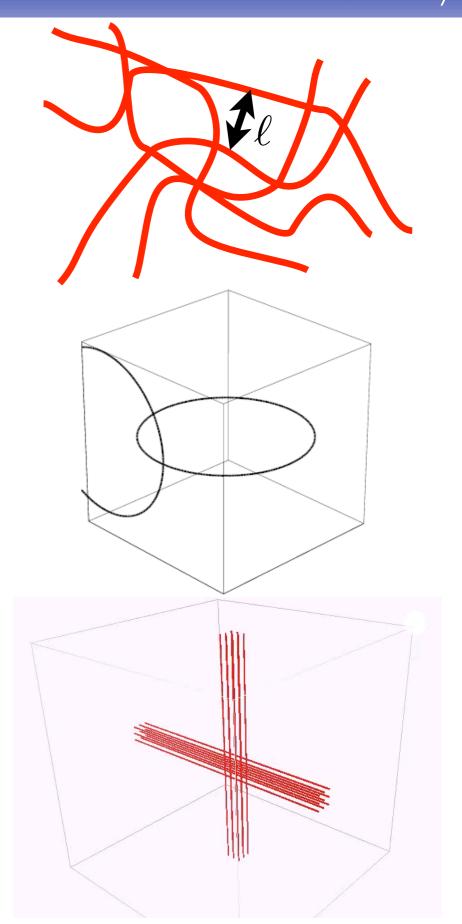


Quantum vortex reconnections

- The classical-quantum vortex bundle analogy breaks down at scales near or below the inter-vortex scale ℓ
- Quantum vortex reconnections become important for the redistribution of energy

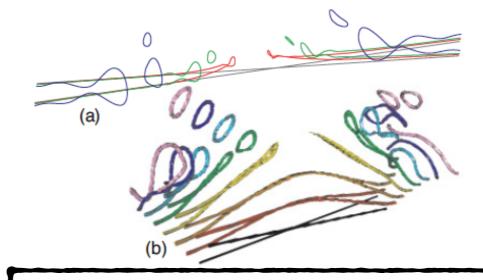
Mechanisms of energy transport

- 1. Vortex ring emission
 - Rings emitted from reconnection region, directly transferring energy through tangle
- 2. Direct sound emission
 - Phonon emission at reconnection point
- 3. Generation of Kelvin waves
 - Energy and momentum transferred to helical Kelvin waves that propagate along individual quantized vortex lines



Vortex ring cascade at large angles

- A vortex reconnection of two (almost) anti-parallel vortices lead to a series of self-reconnections and the emission of multiple vortex rings
- Critical angle for ring generation in the Biot-Savart model is $\theta_c \simeq 0.942\pi$

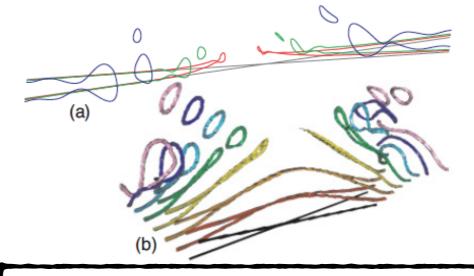


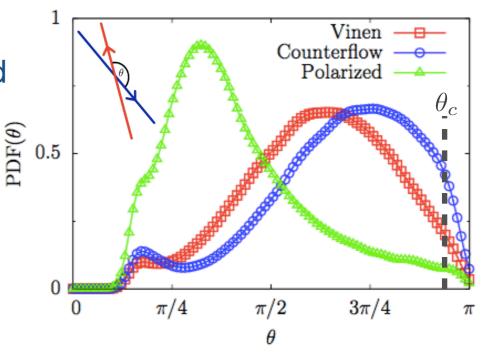
Vortex ring cascade at large angles

- A vortex reconnection of two (almost) anti-parallel vortices lead to a series of self-reconnections and the emission of multiple vortex rings
- Critical angle for ring generation in the Biot-Savart model is $\theta_c \simeq 0.942\pi$

Reconnection angles in QT tangles

- Suppression of large angle reconnections in polarized tangles
- Majority of reconnections will not lead to cascade



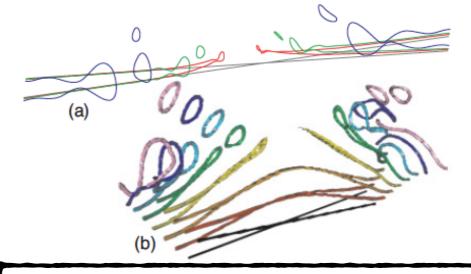


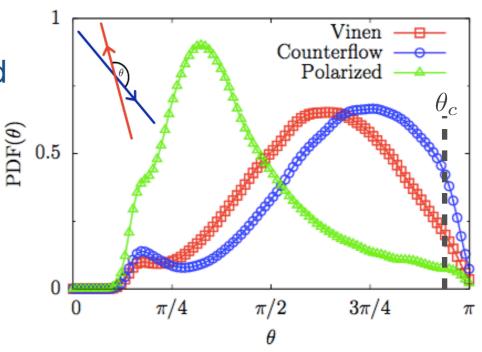
Vortex ring cascade at large angles

- A vortex reconnection of two (almost) anti-parallel vortices lead to a series of self-reconnections and the emission of multiple vortex rings
- Critical angle for ring generation in the Biot-Savart model is $\theta_c \simeq 0.942\pi$

Reconnection angles in QT tangles

- Suppression of large angle reconnections in polarized tangles
- Majority of reconnections will not lead to cascade
 4% (Counterflow), 2% (Vinen), 1% (Polarized)





Vortex ring cascade at large angles

- A vortex reconnection of two (almost) anti-parallel vortices lead to a series of self-reconnections and the emission of multiple vortex rings
- Critical angle for ring generation in the Biot-Savart model is $\theta_c \simeq 0.942\pi$

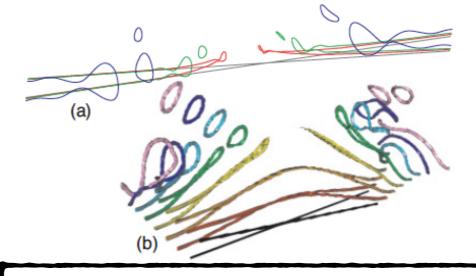
Reconnection angles in QT tangles

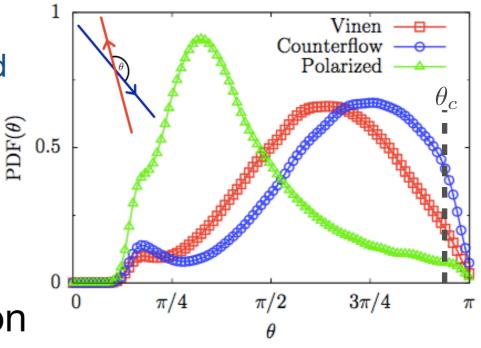
- Suppression of large angle reconnections in polarized tangles
- Majority of reconnections will not lead to cascade
 4% (Counterflow), 2% (Vinen), 1% (Polarized)

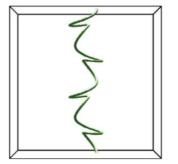
Modulational instability and self-reconnection

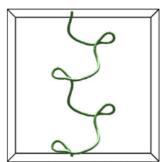
 Strongly nonlinear Kelvin waves can lead to modulational instability and self reconnections

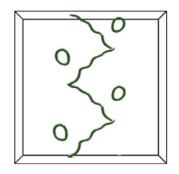
Salman, Phys. Rev. Lett. 111, 165301, (2013)









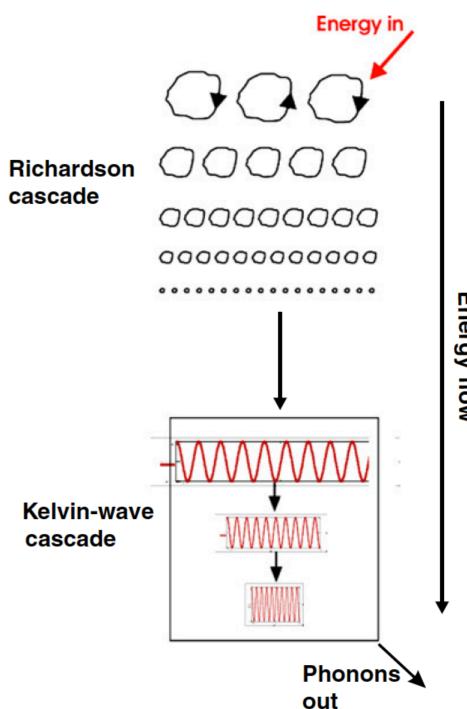


Isotropic homogeneous small-scale QT

- Polarization inhibits ring emission
- Vortex reconnections transfer large-scale energy to Kelvin waves at superfluid cross-over region
- Possible thermalisation at the inter-vortex scale
- Weakly nonlinear Kelvin wave interactions transfer energy to even smaller scales

Isotropic homogeneous small-scale QT

- Polarization inhibits ring emission
- Vortex reconnections transfer large-scale energy to Kelvin waves at superfluid cross-over region
- Possible thermalisation at the inter-vortex scale
- Weakly nonlinear Kelvin wave interactions transfer energy to even smaller scales

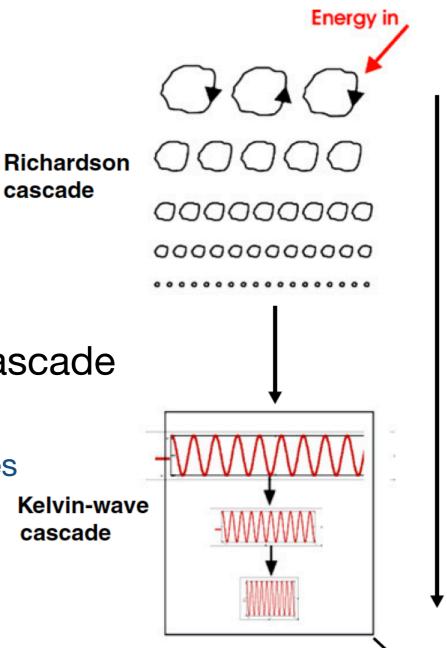


Isotropic homogeneous small-scale QT

- Polarization inhibits ring emission
- Vortex reconnections transfer large-scale energy to Kelvin waves at superfluid cross-over region
- Possible thermalisation at the inter-vortex scale
- Weakly nonlinear Kelvin wave interactions transfer energy to even smaller scales

Wave turbulence description of Kelvin-wave cascade

 Theory for the non-equilibrium statistical description of the weakly nonlinear interaction of an ensemble of waves



Phonons

out

Phonons

out

Isotropic homogeneous small-scale QT

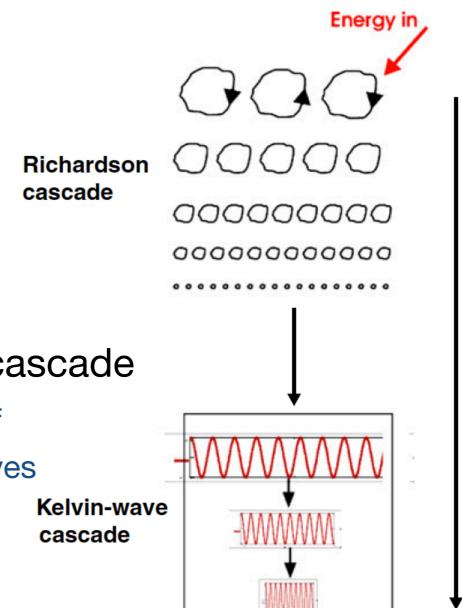
- Polarization inhibits ring emission
- Vortex reconnections transfer large-scale energy to Kelvin waves at superfluid cross-over region
- Possible thermalisation at the inter-vortex scale
- Weakly nonlinear Kelvin wave interactions transfer energy to even smaller scales

Wave turbulence description of Kelvin-wave cascade

 Theory for the non-equilibrium statistical description of the weakly nonlinear interaction of an ensemble of waves

Main theoretical results

- 1. Nonlinear kinetic wave equation
- 2. Steady-state power-law spectra for constant flux transfer of invariants
- 3. But can easily study nonlinear evolution of higher-order moments and amplitude PDFs



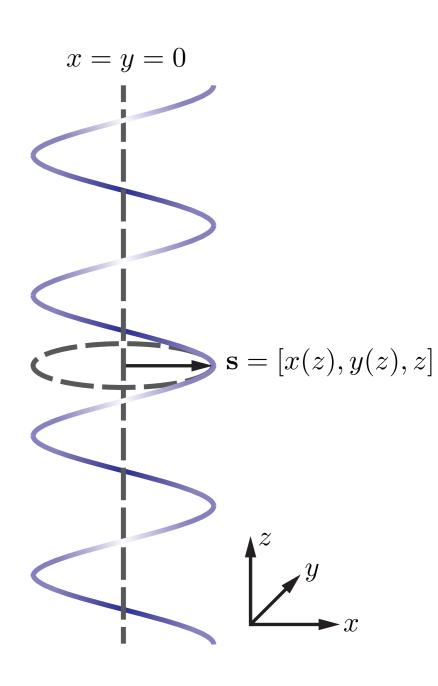
Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{|\mathbf{r} - \mathbf{s}|^3} \times d\mathbf{r}$$

Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{|\mathbf{r} - \mathbf{s}|^3} \times d\mathbf{r}$$

• Consider deviations $\mathbf{s}=[x(z,t),y(z,t),z(t)]$ around straight vortex line configuration periodic in z

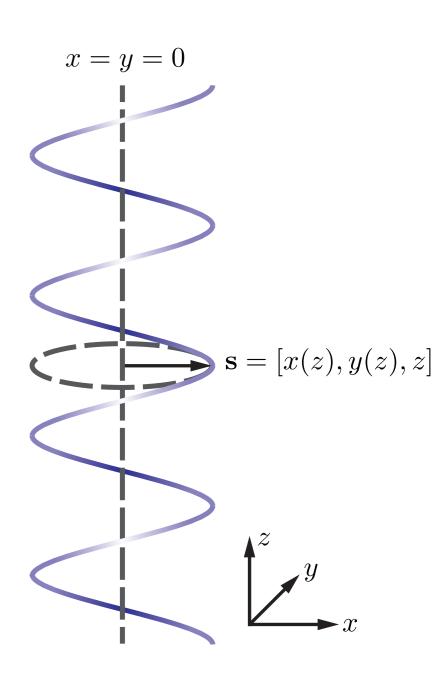


Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{|\mathbf{r} - \mathbf{s}|^3} \times d\mathbf{r}$$

• Consider deviations $\mathbf{s}=[x(z,t),y(z,t),z(t)]$ around straight vortex line configuration periodic in z

$$a(z,t) = x(z,t) + iy(z,t)$$

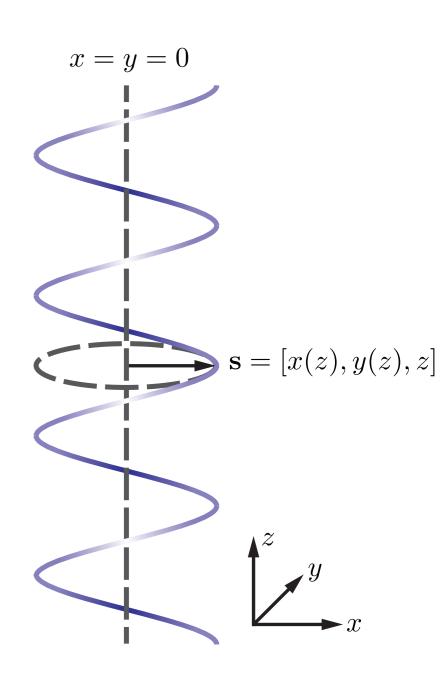


Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{|\mathbf{r} - \mathbf{s}|^3} \times d\mathbf{r}$$

• Consider deviations $\mathbf{s}=[x(z,t),y(z,t),z(t)]$ around straight vortex line configuration periodic in z

$$a(z,t) = x(z,t) + iy(z,t)$$
 $i\kappa \frac{\partial a}{\partial t} = \frac{\delta \mathcal{H}}{\delta a^*}$



Biot-Savart Hamiltonian description

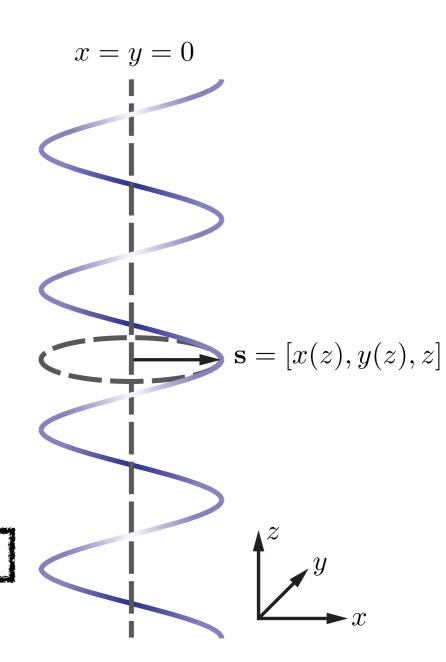
$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{|\mathbf{r} - \mathbf{s}|^3} \times d\mathbf{r}$$

• Consider deviations $\mathbf{s}=[x(z,t),y(z,t),z(t)]$ around straight vortex line configuration periodic in z

$$a(z,t) = x(z,t) + iy(z,t)$$
 $i\kappa \frac{\partial a}{\partial t} = \frac{\delta \mathcal{H}}{\delta a^*}$

$$\mathcal{H} = \frac{\kappa^2}{4\pi} \int \frac{1 + \text{Re}\left[a'^*(z_1)a'(z_2)\right]}{\sqrt{(z_1 - z_2)^2 + |a(z_1) - a(z_2)|^2}} \,dz_1 dz_2$$

Svistunov, Phys. Rev. B, **52**, 3647, (1995)



Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{|\mathbf{r} - \mathbf{s}|^3} \times d\mathbf{r}$$

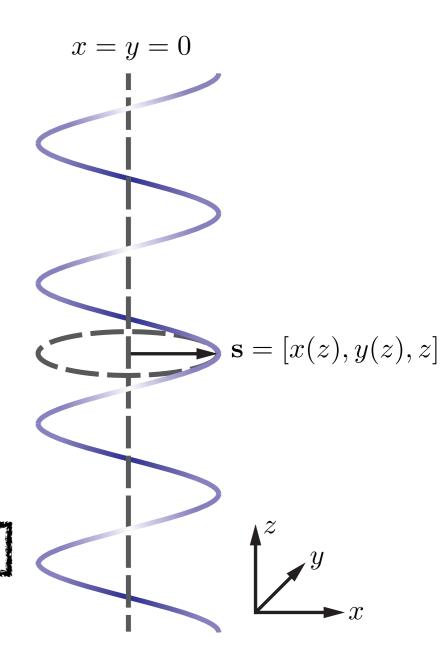
• Consider deviations $\mathbf{s}=[x(z,t),y(z,t),z(t)]$ around straight vortex line configuration periodic in z

$$a(z,t) = x(z,t) + iy(z,t)$$
 $i\kappa \frac{\partial a}{\partial t} = \frac{\delta \mathcal{H}}{\delta a^*}$

$$\mathcal{H} = \frac{\kappa^2}{4\pi} \int \frac{1 + \text{Re}\left[a'^*(z_1)a'(z_2)\right]}{\sqrt{(z_1 - z_2)^2 + |a(z_1) - a(z_2)|^2}} \,dz_1 dz_2$$

Svistunov, Phys. Rev. B, **52**, 3647, (1995)

Truncation and weak nonlinear expansion



Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{|\mathbf{r} - \mathbf{s}|^3} \times d\mathbf{r}$$

• Consider deviations $\mathbf{s}=[x(z,t),y(z,t),z(t)]$ around straight vortex line configuration periodic in z

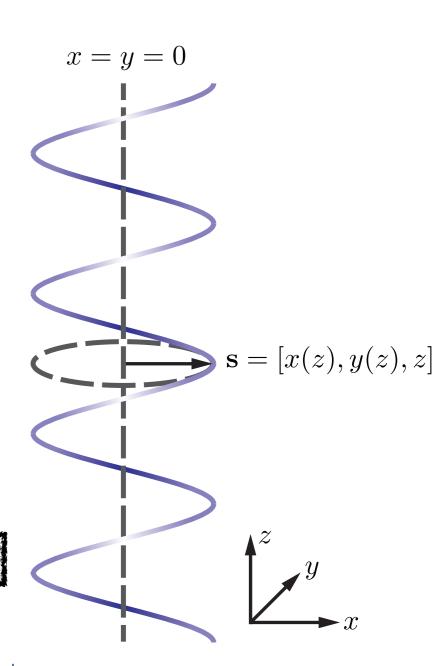
$$a(z,t) = x(z,t) + iy(z,t)$$
 $i\kappa \frac{\partial a}{\partial t} = \frac{\delta \mathcal{H}}{\delta a^*}$

$$\mathcal{H} = \frac{\kappa^2}{4\pi} \int \frac{1 + \text{Re}\left[a'^*(z_1)a'(z_2)\right]}{\sqrt{(z_1 - z_2)^2 + |a(z_1) - a(z_2)|^2}} \,dz_1 dz_2$$

Svistunov, Phys. Rev. B, **52**, 3647, (1995)

Truncation and weak nonlinear expansion

• Regularization of integral by introducing cut-off $\xi < |z_2 - z_1|$



Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{|\mathbf{r} - \mathbf{s}|^3} \times d\mathbf{r}$$

• Consider deviations $\mathbf{s}=[x(z,t),y(z,t),z(t)]$ around straight vortex line configuration periodic in z

$$a(z,t) = x(z,t) + iy(z,t)$$
 $i\kappa \frac{\partial a}{\partial t} = \frac{\delta \mathcal{H}}{\delta a^*}$

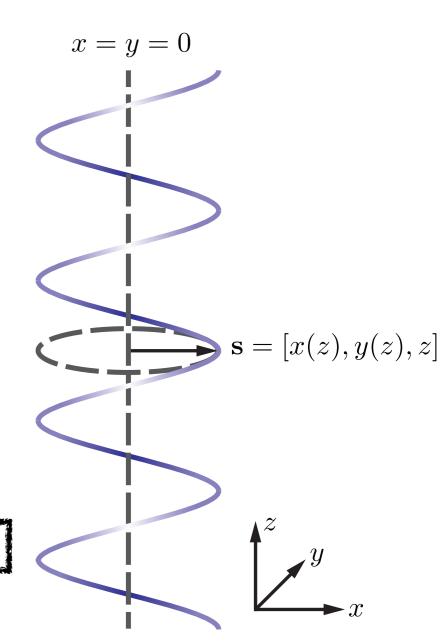
$$\mathcal{H} = \frac{\kappa^2}{4\pi} \int \frac{1 + \text{Re}\left[a'^*(z_1)a'(z_2)\right]}{\sqrt{(z_1 - z_2)^2 + |a(z_1) - a(z_2)|^2}} \,dz_1 dz_2$$

Svistunov, Phys. Rev. B, **52**, 3647, (1995)

Truncation and weak nonlinear expansion

- Regularization of integral by introducing cut-off $\,\xi < |z_2 z_1|\,$
- Expand Hamiltonian in powers of the canonical variable:

$$\epsilon = \frac{|a(z_1) - a(z_2)|}{|z_1 - z_2|} \ll 1$$
 $\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4 + \mathcal{H}_6 + \cdots$



Hamiltonian-Fourier Representation

Wave action representation of the Hamiltonian

• Introduce wave action variables
$$a(z,t) = \kappa^{-1/2} \sum_{\mathbf{k}} a_{\mathbf{k}}(t) \exp(i \, \mathbf{k} \, z)$$

Hamiltonian-Fourier Representation

Wave action representation of the Hamiltonian

• Introduce wave action variables $a(z,t) = \kappa^{-1/2} \sum_{\mathbf{k}} a_{\mathbf{k}}(t) \exp(i \, \mathbf{k} \, z)$

$$\mathcal{H} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} a_{\mathbf{k}} a_{\mathbf{k}}^* + \frac{1}{4} \sum_{1,2,3,4} T_{3,4}^{1,2} \ a_1 a_2 a_3^* a_4^* \delta_{3,4}^{1,2} + \frac{1}{36} \sum_{1,2,3,4,5,6} W_{4,5,6}^{1,2,3} \ a_1 a_2 a_3 a_4^* a_5^* a_6^* \delta_{4,5,6}^{1,2,3}$$

$$a_1 = a_{\mathbf{k}_1}(t)$$
 $T_{3,4}^{1,2} = T(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4)$ $\delta_{3,4}^{1,2} = \delta(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3 - \mathbf{k}_4)$

Hamiltonian-Fourier Representation

Wave action representation of the Hamiltonian

• Introduce wave action variables $a(z,t) = \kappa^{-1/2} \sum_{\mathbf{k}} a_{\mathbf{k}}(t) \exp(i \, \mathbf{k} \, z)$

$$\mathcal{H} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} a_{\mathbf{k}} a_{\mathbf{k}}^* + \frac{1}{4} \sum_{1,2,3,4} T_{3,4}^{1,2} a_1 a_2 a_3^* a_4^* \delta_{3,4}^{1,2} + \frac{1}{36} \sum_{1,2,3,4,5,6} W_{4,5,6}^{1,2,3} a_1 a_2 a_3 a_4^* a_5^* a_6^* \delta_{4,5,6}^{1,2,3}$$

$$a_1 = a_{\mathbf{k}_1}(t)$$
 $T_{3,4}^{1,2} = T(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4)$ $\delta_{3,4}^{1,2} = \delta(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3 - \mathbf{k}_4)$

Interaction coefficients

$$\omega_{\mathbf{k}} = \frac{\kappa \Lambda}{4\pi} \mathbf{k}^{2} - \frac{\kappa}{4\pi} \mathbf{k}^{2} \ln(\mathbf{k}\ell_{\text{eff}}), \qquad \Lambda = \ln\left(\ell_{\text{eff}}/\tilde{\xi}\right) \gg 1, \quad \tilde{\xi} = \xi e^{\gamma + \frac{3}{2}}$$

$$T_{3,4}^{1,2} = -\frac{\Lambda}{4\pi} \mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4} - \frac{1}{16\pi} \left[5\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4} + \mathcal{F}_{3,4}^{1,2} \right]$$

$$W_{4,5,6}^{1,2,3} = \frac{9\Lambda}{8\pi\kappa} \mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4} \mathbf{k}_{5} \mathbf{k}_{6} + \frac{9}{32\pi\kappa} \left[7\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4} \mathbf{k}_{5} \mathbf{k}_{6} + \mathcal{G}_{4,5,6}^{1,2,3} \right]$$

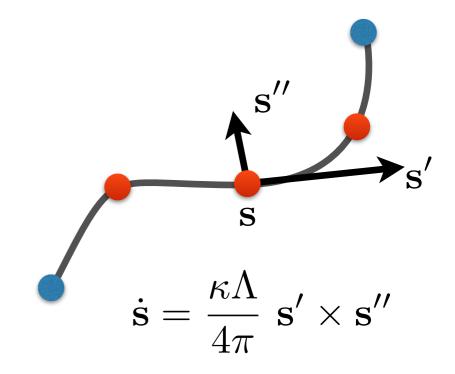
- Separate logarithm divergent terms by introducing an effective length scale $\ell_{
 m eff}$
- $\mathcal{F}^{1,2}_{3,4}$ and $\mathcal{G}^{1,2,3}_{4,5,6}$ are terms containing logarithmic contributions

Leading Order Integrability

Local Induction Approximation (LIA)

- If the cutoff is small then terms proportional to Λ give greatest contribution and diverge in the limit $\xi\to 0$
- Keeping only the leading divergent terms, then the Hamiltonian becomes

$$\mathcal{H} = \frac{\kappa^2 \Lambda}{2\pi} \int \sqrt{1 + |a'(z)|^2} \, \mathrm{d}z$$



Svistunov, Phys. Rev. B, 52, 3647, (1995)

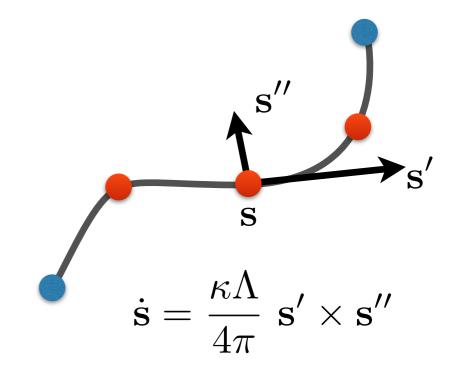
- Shown to be equivalent to the Local Induction Approximation (LIA)
- LIA implies only neighbouring vortex elements determine evolution and corresponds to integrable dynamics
- Subleading in Λ (non-LIA) terms are essential for turbulent Kelvin-wave interactions

Leading Order Integrability

Local Induction Approximation (LIA)

- If the cutoff is small then terms proportional to Λ give greatest contribution and diverge in the limit $\xi\to 0$
- Keeping only the leading divergent terms, then the Hamiltonian becomes

$$\mathcal{H} = \frac{\kappa^2 \Lambda}{2\pi} \int \sqrt{1 + |a'(z)|^2} \, \mathrm{d}z$$



Svistunov, Phys. Rev. B, 52, 3647, (1995)

- Shown to be equivalent to the Local Induction Approximation (LIA)
- LIA implies only neighbouring vortex elements determine evolution and corresponds to integrable dynamics
- Subleading in Λ (non-LIA) terms are essential for turbulent Kelvin-wave interactions

Double expansion in nonlinearity $\epsilon \ll 1$ and divergence $\Lambda^{-1} \ll 1$

Wave resonance

• Waves only transfer energy and momentum to each other when in resonance

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H}=\mathcal{H}_2+\mathcal{H}_4$

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H}=\mathcal{H}_2+\mathcal{H}_4$

Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*}$$

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H}=\mathcal{H}_2+\mathcal{H}_4$

Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ a_1 a_2 a_3^* \ \delta_{3,\mathbf{k}}^{1,2}$$

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H}=\mathcal{H}_2+\mathcal{H}_4$

Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ a_1 a_2 a_3^* \ \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}} = a_{\mathbf{k}} \, \exp{(i \, \omega_{\mathbf{k}} \, t)}$

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H}=\mathcal{H}_2+\mathcal{H}_4$

Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ a_1 a_2 a_3^* \ \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}} = a_{\mathbf{k}} \exp(i \omega_{\mathbf{k}} t)$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} b_1 b_2 b_3^* \delta_{3,\mathbf{k}}^{1,2} \exp\left(-i\omega_{3,\mathbf{k}}^{1,2}t\right)$$

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H}=\mathcal{H}_2+\mathcal{H}_4$

Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ a_1 a_2 a_3^* \ \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}}=a_{\mathbf{k}}\,\exp\left(i\,\omega_{\mathbf{k}}\,t\right)$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} b_1 b_2 b_3^* \delta_{3,\mathbf{k}}^{1,2} \exp\left(-i\omega_{3,\mathbf{k}}^{1,2}t\right)$$

• Main nonlinear contribution when frequencies cancel: $\omega_{3,\mathbf{k}}^{1,2} \equiv \omega_1 + \omega_2 - \omega_3 - \omega_\mathbf{k} = 0$

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H}=\mathcal{H}_2+\mathcal{H}_4$

Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ a_1 a_2 a_3^* \ \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}}=a_{\mathbf{k}}\,\exp\left(i\,\omega_{\mathbf{k}}\,t\right)$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} b_1 b_2 b_3^* \delta_{3,\mathbf{k}}^{1,2} \exp\left(-i\omega_{3,\mathbf{k}}^{1,2}t\right)$$

• Main nonlinear contribution when frequencies cancel: $\omega_{3,\mathbf{k}}^{1,2} \equiv \omega_1 + \omega_2 - \omega_3 - \omega_\mathbf{k} = 0$

Four-wave resonance condition

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H}=\mathcal{H}_2+\mathcal{H}_4$

Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ a_1 a_2 a_3^* \ \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}} = a_{\mathbf{k}} \, \exp{(i \, \omega_{\mathbf{k}} \, t)}$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} b_1 b_2 b_3^* \delta_{3,\mathbf{k}}^{1,2} \exp\left(-i\omega_{3,\mathbf{k}}^{1,2}t\right)$$

• Main nonlinear contribution when frequencies cancel: $\omega_{3,\mathbf{k}}^{1,2} \equiv \omega_1 + \omega_2 - \omega_3 - \omega_\mathbf{k} = 0$

Four-wave resonance condition

 This means that there are essentially two delta functions:

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H}=\mathcal{H}_2+\mathcal{H}_4$

Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ a_1 a_2 a_3^* \ \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}}=a_{\mathbf{k}}\,\exp\left(i\,\omega_{\mathbf{k}}\,t\right)$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} b_1 b_2 b_3^* \delta_{3,\mathbf{k}}^{1,2} \exp\left(-i\omega_{3,\mathbf{k}}^{1,2}t\right)$$

• Main nonlinear contribution when frequencies cancel: $\omega_{3,\mathbf{k}}^{1,2} \equiv \omega_1 + \omega_2 - \omega_3 - \omega_\mathbf{k} = 0$

Four-wave resonance condition

 This means that there are essentially two delta functions:

Momentum conservation

$$\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}$$
$$\omega_1 + \omega_2 = \omega_3 + \omega_{\mathbf{k}}$$

Energy conservation

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H}=\mathcal{H}_2+\mathcal{H}_4$

Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ a_1 a_2 a_3^* \ \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}} = a_{\mathbf{k}} \, \exp{(i \, \omega_{\mathbf{k}} \, t)}$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} b_1 b_2 b_3^* \delta_{3,\mathbf{k}}^{1,2} \exp\left(-i\omega_{3,\mathbf{k}}^{1,2}t\right)$$

• Main nonlinear contribution when frequencies cancel: $\omega_{3,\mathbf{k}}^{1,2} \equiv \omega_1 + \omega_2 - \omega_3 - \omega_\mathbf{k} = 0$

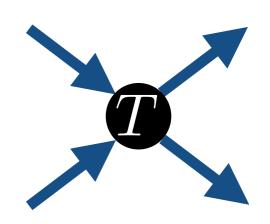
Four-wave resonance condition

 This means that there are essentially two delta functions:

Momentum conservation

$$\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}$$
$$\omega_1 + \omega_2 = \omega_3 + \omega_{\mathbf{k}}$$

Energy conservation



Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H}=\mathcal{H}_2+\mathcal{H}_4$

Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ a_1 a_2 a_3^* \ \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}}=a_{\mathbf{k}}\,\exp\left(i\,\omega_{\mathbf{k}}\,t\right)$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} b_1 b_2 b_3^* \delta_{3,\mathbf{k}}^{1,2} \exp\left(-i\omega_{3,\mathbf{k}}^{1,2}t\right)$$

• Main nonlinear contribution when frequencies cancel: $\omega_{3,\mathbf{k}}^{1,2} \equiv \omega_1 + \omega_2 - \omega_3 - \omega_\mathbf{k} = 0$

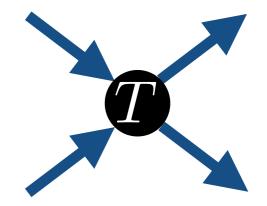
Four-wave resonance condition

 This means that there are essentially two delta functions:

Momentum conservation

$$\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}$$
$$\omega_1 + \omega_2 = \omega_3 + \omega_{\mathbf{k}}$$

Energy conservation



Only trivial resonances can solve resonance condition for Kelvin-wave frequency

$$k_1 = k_3$$
, $k_2 = k$, or $k_1 = k$, $k_2 = k_3$

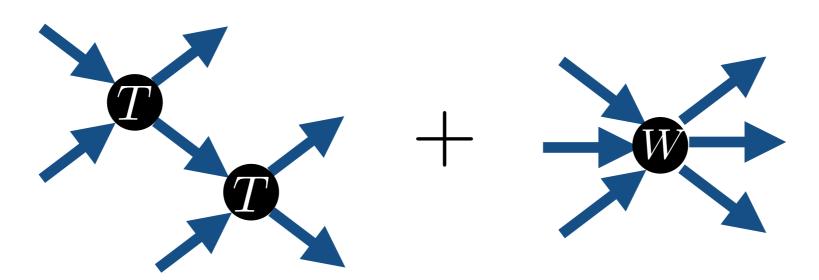
Canonical transformation

• Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics

- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
- A classical canonical transformation $a_{\bf k} \to c_{\bf k}$ can be used to express Hamiltonian in new variables so non-resonant 4-wave terms do no appear

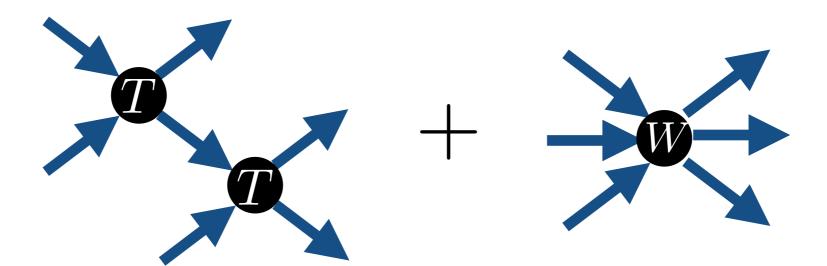
- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
- A classical canonical transformation $a_{\bf k} \to c_{\bf k}$ can be used to express Hamiltonian in new variables so non-resonant 4-wave terms do no appear
- Through the transformation, quartic interactions re-appear as sextic \mathcal{H}_6 contributions

- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
- A classical canonical transformation $a_{\bf k} \to c_{\bf k}$ can be used to express Hamiltonian in new variables so non-resonant 4-wave terms do no appear
- Through the transformation, quartic interactions re-appear as sextic \mathcal{H}_6 contributions



Canonical transformation

- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
- A classical canonical transformation $a_{\bf k} \to c_{\bf k}$ can be used to express Hamiltonian in new variables so non-resonant 4-wave terms do no appear
- Through the transformation, quartic interactions re-appear as sextic \mathcal{H}_6 contributions



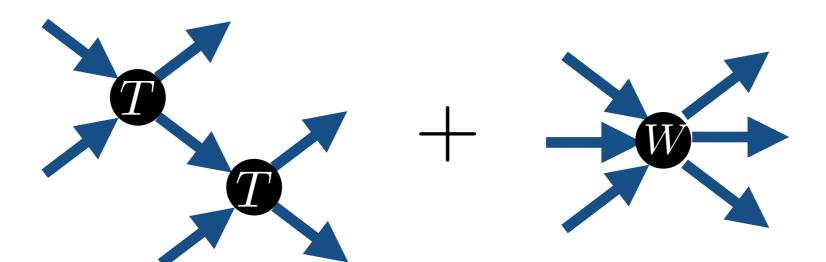
Six-wave interaction coefficient of \mathcal{H}_6

JL et al. Phys. Rev. B, **81**, 104526, (2010)

$$\tilde{W} = W^{\Lambda} + \frac{T^{\Lambda} \circ T^{\Lambda}}{\omega^{\Lambda}} + W^{1} + \frac{T^{1} \circ T^{\Lambda}}{\omega^{\Lambda}} + \frac{T^{\Lambda} \circ T^{1}}{\omega^{\Lambda}} + \frac{T^{\Lambda} \circ T^{\Lambda}}{(\omega^{\Lambda})^{2}} \omega^{1} + \mathcal{O}\left(\Lambda^{-1}\right)$$

Canonical transformation

- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
- A classical canonical transformation $a_{\bf k} \to c_{\bf k}$ can be used to express Hamiltonian in new variables so non-resonant 4-wave terms do no appear
- Through the transformation, quartic interactions re-appear as sextic \mathcal{H}_6 contributions



Six-wave interaction coefficient of \mathcal{H}_6

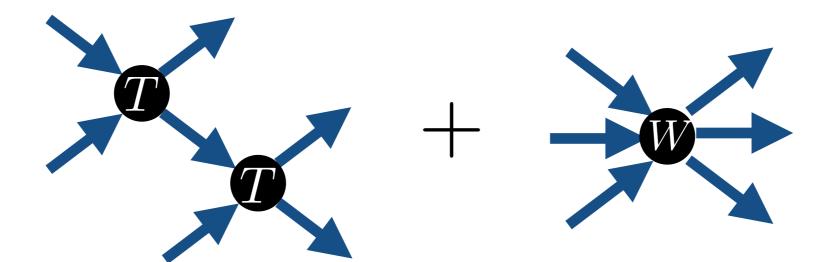
JL et al. Phys. Rev. B, **81**, 104526, (2010)

$$\tilde{W} = W^{\Lambda} + \frac{T^{\Lambda} \circ T^{\Lambda}}{\omega^{\Lambda}} + W^{1} + \frac{T^{1} \circ T^{\Lambda}}{\omega^{\Lambda}} + \frac{T^{\Lambda} \circ T^{1}}{\omega^{\Lambda}} + \frac{T^{\Lambda} \circ T^{\Lambda}}{(\omega^{\Lambda})^{2}} \omega^{1} + \mathcal{O}\left(\Lambda^{-1}\right)$$

Divergent terms that correspond to LIA cancel

Canonical transformation

- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
- A classical canonical transformation $a_{\bf k} \to c_{\bf k}$ can be used to express Hamiltonian in new variables so non-resonant 4-wave terms do no appear
- Through the transformation, quartic interactions re-appear as sextic \mathcal{H}_6 contributions



Six-wave interaction coefficient of \mathcal{H}_6

JL et al. Phys. Rev. B, 81, 104526, (2010)

$$\tilde{W} = W^{\Lambda} + \frac{T^{\Lambda} \circ T^{\Lambda}}{\omega^{\Lambda}} + W^{1} + \frac{T^{1} \circ T^{\Lambda}}{\omega^{\Lambda}} + \frac{T^{\Lambda} \circ T^{1}}{\omega^{\Lambda}} + \frac{T^{\Lambda} \circ T^{\Lambda}}{(\omega^{\Lambda})^{2}} \omega^{1} + \mathcal{O}\left(\Lambda^{-1}\right)$$

$$= 0$$

$$\neq 0$$
Divergent terms that

Divergent terms that correspond to LIA cancel

Leading order terms describing Kelvin-wave dynamics

Wave action density

Wave action density

• Of particular interest is the second order correlator function $\langle a_{\bf k} a_{{\bf k}_1}^* \rangle = n_{\bf k} \delta({\bf k} - {\bf k}_1)$

Wave action density

- Of particular interest is the second order correlator function $\langle a_{\bf k} a_{{\bf k}_1}^* \rangle = n_{\bf k} \delta({\bf k} {\bf k}_1)$
- Wave energy density is related to the wave action by $E_{\bf k}=\omega_{\bf k}n_{\bf k}$

Wave action density

- Of particular interest is the second order correlator function $\langle a_{\bf k} a_{{\bf k}_1}^* \rangle = n_{\bf k} \delta({\bf k} {\bf k}_1)$
- Wave energy density is related to the wave action by $E_{\bf k}=\omega_{\bf k}n_{\bf k}$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{6} \int \left| \tilde{W}_{4,5,\mathbf{k}}^{1,2,3} \right|^2 \delta_{4,5,\mathbf{k}}^{1,2,3} \, \delta \left(\omega_{4,5,\mathbf{k}}^{1,2,3} \right) n_1 n_2 n_3 n_4 n_5 n_{\mathbf{k}} \\
\times \left[\frac{1}{n_{\mathbf{k}}} + \frac{1}{n_5} + \frac{1}{n_6} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \, d\mathbf{k}_1 \, d\mathbf{k}_2 \, d\mathbf{k}_3 \, d\mathbf{k}_4 \, d\mathbf{k}_5$$

Kozik, Svistunov, Phys. Rev. Lett., 92, 035301, (2004)

Wave action density

- Of particular interest is the second order correlator function $\langle a_{\bf k} a_{{\bf k}_1}^* \rangle = n_{\bf k} \delta({\bf k} {\bf k}_1)$
- Wave energy density is related to the wave action by $E_{\bf k}=\omega_{\bf k}n_{\bf k}$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{6} \int \left| \tilde{W}_{4,5,\mathbf{k}}^{1,2,3} \right|^2 \delta_{4,5,\mathbf{k}}^{1,2,3} \, \delta \left(\omega_{4,5,\mathbf{k}}^{1,2,3} \right) n_1 n_2 n_3 n_4 n_5 n_{\mathbf{k}} \\
\times \left[\frac{1}{n_{\mathbf{k}}} + \frac{1}{n_5} + \frac{1}{n_6} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \, d\mathbf{k}_1 \, d\mathbf{k}_2 \, d\mathbf{k}_3 \, d\mathbf{k}_4 \, d\mathbf{k}_5$$

Kozik, Svistunov, Phys. Rev. Lett., **92**, 035301, (2004)

Kolmogorov-Zakharov power-law solutions

Wave action density

- Of particular interest is the second order correlator function $\langle a_{\bf k} a_{{\bf k}_1}^* \rangle = n_{\bf k} \delta({\bf k} {\bf k}_1)$
- Wave energy density is related to the wave action by $E_{\bf k}=\omega_{\bf k}n_{\bf k}$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{6} \int \left| \tilde{W}_{4,5,\mathbf{k}}^{1,2,3} \right|^2 \delta_{4,5,\mathbf{k}}^{1,2,3} \, \delta \left(\omega_{4,5,\mathbf{k}}^{1,2,3} \right) n_1 n_2 n_3 n_4 n_5 n_{\mathbf{k}} \\
\times \left[\frac{1}{n_{\mathbf{k}}} + \frac{1}{n_5} + \frac{1}{n_6} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \, d\mathbf{k}_1 \, d\mathbf{k}_2 \, d\mathbf{k}_3 \, d\mathbf{k}_4 \, d\mathbf{k}_5$$

Kozik, Svistunov, Phys. Rev. Lett., **92**, 035301, (2004)

Kolmogorov-Zakharov power-law solutions $\frac{\partial n_{\mathbf{k}}}{\partial t} = I\left(n_{\mathbf{k}} = Ck^{-x}\right) = 0$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = I\left(n_{\mathbf{k}} = Ck^{-x}\right) = 0$$

Wave action density

- Of particular interest is the second order correlator function $\langle a_{\bf k} a_{{\bf k}_1}^* \rangle = n_{\bf k} \delta({\bf k} {\bf k}_1)$
- Wave energy density is related to the wave action by $E_{\bf k}=\omega_{\bf k}n_{\bf k}$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{6} \int \left| \tilde{W}_{4,5,\mathbf{k}}^{1,2,3} \right|^2 \delta_{4,5,\mathbf{k}}^{1,2,3} \, \delta \left(\omega_{4,5,\mathbf{k}}^{1,2,3} \right) n_1 n_2 n_3 n_4 n_5 n_{\mathbf{k}} \\
\times \left[\frac{1}{n_{\mathbf{k}}} + \frac{1}{n_5} + \frac{1}{n_6} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \, d\mathbf{k}_1 \, d\mathbf{k}_2 \, d\mathbf{k}_3 \, d\mathbf{k}_4 \, d\mathbf{k}_5$$

Kozik, Svistunov, Phys. Rev. Lett., **92**, 035301, (2004)

Kolmogorov-Zakharov power-law solutions $\frac{\partial n_{\mathbf{k}}}{\partial t} = I\left(n_{\mathbf{k}} = Ck^{-x}\right) = 0$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = I\left(n_{\mathbf{k}} = Ck^{-x}\right) = 0$$

One solution corresponds to constant energy transfer to small scales by Kelvin-waves

$$E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$$

Wave action density

- Of particular interest is the second order correlator function $\langle a_{\bf k} a_{{\bf k}_1}^* \rangle = n_{\bf k} \delta({\bf k} {\bf k}_1)$
- Wave energy density is related to the wave action by $E_{\bf k}=\omega_{\bf k}n_{\bf k}$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{6} \int \left| \tilde{W}_{4,5,\mathbf{k}}^{1,2,3} \right|^2 \delta_{4,5,\mathbf{k}}^{1,2,3} \, \delta \left(\omega_{4,5,\mathbf{k}}^{1,2,3} \right) n_1 n_2 n_3 n_4 n_5 n_{\mathbf{k}} \\
\times \left[\frac{1}{n_{\mathbf{k}}} + \frac{1}{n_5} + \frac{1}{n_6} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \, d\mathbf{k}_1 \, d\mathbf{k}_2 \, d\mathbf{k}_3 \, d\mathbf{k}_4 \, d\mathbf{k}_5$$

Kozik, Svistunov, Phys. Rev. Lett., **92**, 035301, (2004)

Kolmogorov-Zakharov power-law solutions $\frac{\partial n_{\mathbf{k}}}{\partial t} = I\left(n_{\mathbf{k}} = Ck^{-x}\right) = 0$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = I\left(n_{\mathbf{k}} = Ck^{-x}\right) = 0$$

One solution corresponds to constant energy transfer to small scales by Kelvin-waves

$$E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$$
 Kozik-Svistunov Energy Spectrum

Wave action density

- Of particular interest is the second order correlator function $\langle a_{\bf k} a_{{\bf k}_1}^* \rangle = n_{\bf k} \delta({\bf k} {\bf k}_1)$
- Wave energy density is related to the wave action by $E_{\bf k}=\omega_{\bf k}n_{\bf k}$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{6} \int \left| \tilde{W}_{4,5,\mathbf{k}}^{1,2,3} \right|^2 \delta_{4,5,\mathbf{k}}^{1,2,3} \, \delta \left(\omega_{4,5,\mathbf{k}}^{1,2,3} \right) n_1 n_2 n_3 n_4 n_5 n_{\mathbf{k}} \\
\times \left[\frac{1}{n_{\mathbf{k}}} + \frac{1}{n_5} + \frac{1}{n_6} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \, d\mathbf{k}_1 \, d\mathbf{k}_2 \, d\mathbf{k}_3 \, d\mathbf{k}_4 \, d\mathbf{k}_5$$

Kozik, Svistunov, Phys. Rev. Lett., **92**, 035301, (2004)

Kolmogorov-Zakharov power-law solutions $\frac{\partial n_{\mathbf{k}}}{\partial t} = I\left(n_{\mathbf{k}} = Ck^{-x}\right) = 0$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = I\left(n_{\mathbf{k}} = Ck^{-x}\right) = 0$$

One solution corresponds to constant energy transfer to small scales by Kelvin-waves

$$E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$$
 Kozik-Svistunov Energy Spectrum

Locality

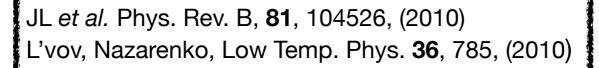
 With any KZ solutions, convergence of the collision integral must be ensured in order for the realizability of the stationary state

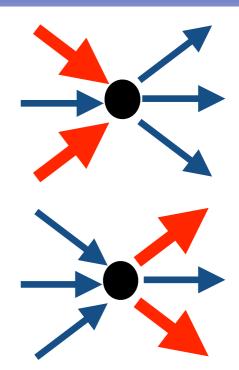
Nonlocal wave interactions

• Exact calculation of interaction coefficient enabled us to prove that six-wave collision integral diverges in the limit of two long Kelvin-waves

Nonlocal wave interactions

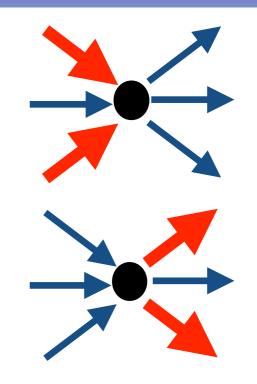
- Exact calculation of interaction coefficient enabled us to prove that six-wave collision integral diverges in the limit of two long Kelvin-waves
- Effective four-wave interaction takes place on curved vortex line





Nonlocal wave interactions

- Exact calculation of interaction coefficient enabled us to prove that six-wave collision integral diverges in the limit of two long Kelvin-waves
- Effective four-wave interaction takes place on curved vortex line



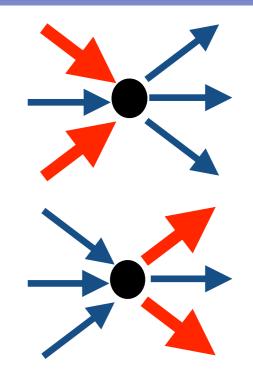
JL *et al.* Phys. Rev. B, **81**, 104526, (2010) L'vov, Nazarenko, Low Temp. Phys. **36**, 785, (2010)

Effective four-wave kinetic description

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{12} \int \left\{ |V_{\mathbf{k}}^{1,2,3}|^2 n_1 n_2 n_3 n_{\mathbf{k}} \left[\frac{1}{n_{\mathbf{k}}} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \delta_{1,2,3}^{\mathbf{k}} \delta \left(\omega_{1,2,3}^{\mathbf{k}} \right) \right. \\
\left. + 3|V_{1}^{\mathbf{k},2,3}|^2 n_1 n_2 n_3 n_{\mathbf{k}} \left[\frac{1}{n_1} - \frac{1}{n_k} - \frac{1}{n_2} - \frac{1}{n_3} \right] \delta_{\mathbf{k},2,3}^{\mathbf{k}} \delta \left(\omega_{\mathbf{k},2,3}^{\mathbf{k}} \right) \right\} d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3$$

Nonlocal wave interactions

- Exact calculation of interaction coefficient enabled us to prove that six-wave collision integral diverges in the limit of two long Kelvin-waves
- Effective four-wave interaction takes place on curved vortex line



JL *et al.* Phys. Rev. B, **81**, 104526, (2010) L'vov, Nazarenko, Low Temp. Phys. **36**, 785, (2010)

Effective four-wave kinetic description

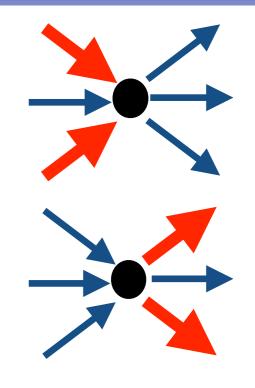
$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{12} \int \left\{ |V_{\mathbf{k}}^{1,2,3}|^2 n_1 n_2 n_3 n_{\mathbf{k}} \left[\frac{1}{n_{\mathbf{k}}} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \delta_{1,2,3}^{\mathbf{k}} \delta \left(\omega_{1,2,3}^{\mathbf{k}} \right) \right. \\
\left. + 3|V_{1}^{\mathbf{k},2,3}|^2 n_1 n_2 n_3 n_{\mathbf{k}} \left[\frac{1}{n_1} - \frac{1}{n_{\mathbf{k}}} - \frac{1}{n_2} - \frac{1}{n_3} \right] \delta_{\mathbf{k},2,3}^{1} \delta \left(\omega_{\mathbf{k},2,3}^{1} \right) \right\} d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3$$

Alternative Kolmogorov-Zakharov solution

$$E_k = C_{LN} \Lambda \kappa^{7/5} \epsilon^{1/3} \Psi^{-2/3} k^{-5/3}$$

Nonlocal wave interactions

- Exact calculation of interaction coefficient enabled us to prove that six-wave collision integral diverges in the limit of two long Kelvin-waves
- Effective four-wave interaction takes place on curved vortex line



JL *et al.* Phys. Rev. B, **81**, 104526, (2010) L'vov, Nazarenko, Low Temp. Phys. **36**, 785, (2010)

Effective four-wave kinetic description

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{12} \int \left\{ |V_{\mathbf{k}}^{1,2,3}|^2 n_1 n_2 n_3 n_{\mathbf{k}} \left[\frac{1}{n_{\mathbf{k}}} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \delta_{1,2,3}^{\mathbf{k}} \delta \left(\omega_{1,2,3}^{\mathbf{k}} \right) \right. \\
\left. + 3|V_{1}^{\mathbf{k},2,3}|^2 n_1 n_2 n_3 n_{\mathbf{k}} \left[\frac{1}{n_1} - \frac{1}{n_{\mathbf{k}}} - \frac{1}{n_2} - \frac{1}{n_3} \right] \delta_{\mathbf{k},2,3}^{1} \delta \left(\omega_{\mathbf{k},2,3}^{1} \right) \right\} d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3$$

Alternative Kolmogorov-Zakharov solution

$$E_k = C_{LN} \, \Lambda \, \kappa^{7/5} \, \epsilon^{1/3} \, \Psi^{-2/3} \, k^{-5/3}$$
 L'vov-Nazarenko Energy Spectrum

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective *local* four-wave description:

LN:
$$E_{\mathbf{k}} = C_{LN} \, \kappa \, \Lambda \, \epsilon^{1/3} \, \Psi^{-2/3} \, k^{-5/3}$$

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective local four-wave description: LN: $E_{\bf k}=C_{LN}\,\kappa\,\Lambda\,\epsilon^{1/3}\,\Psi^{-2/3}\,k^{-5/3}$

Exact computation of energy spectrum prefactor

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective local four-wave description: LN: $E_{\bf k}=C_{LN}\,\kappa\,\Lambda\,\epsilon^{1/3}\,\Psi^{-2/3}\,k^{-5/3}$

Exact computation of energy spectrum prefactor

• Four-wave (3-dimensional) collision integral simple enough to solve directly

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective
 local four-wave description:

LN:
$$E_{\mathbf{k}} = C_{LN} \, \kappa \, \Lambda \, \epsilon^{1/3} \, \Psi^{-2/3} \, k^{-5/3}$$

Exact computation of energy spectrum prefactor

- Four-wave (3-dimensional) collision integral simple enough to solve directly
- Derivative of collision integral will determine prefactor where $E_{\bf k}=\omega_{\bf k}n_{\bf k}\propto k^{2-x}$

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective *local* four-wave description:

LN:
$$E_{\mathbf{k}} = C_{LN} \, \kappa \, \Lambda \, \epsilon^{1/3} \, \Psi^{-2/3} \, k^{-5/3}$$

Exact computation of energy spectrum prefactor

- Four-wave (3-dimensional) collision integral simple enough to solve directly
- Derivative of collision integral will determine prefactor where $E_{\bf k}=\omega_{\bf k}n_{\bf k}\propto k^{2-x}$

$$I(x) = \int (q_1 q_2 q_3)^{2-x} (1 - q_1^y - q_2^y - q_3^y) (1 - q_1^x - q_2^x - q_3^x)$$

$$\times \delta (1 - q_1^2 - q_2^2 - q_3^2) \delta (1 - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3) d\mathbf{q}_1 d\mathbf{q}_2 d\mathbf{q}_3$$

Boué et al. Phys. Rev. B, 84, 064516, (2011)

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective *local* four-wave description:

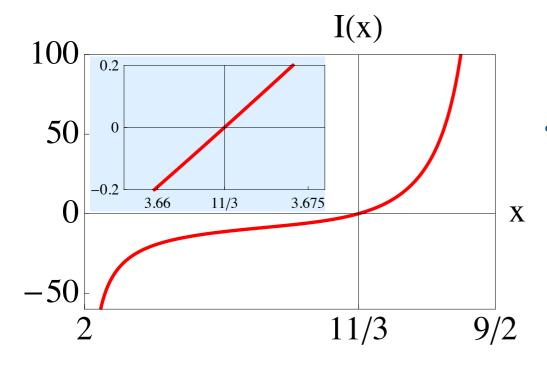
LN:
$$E_{\mathbf{k}} = C_{LN} \, \kappa \, \Lambda \, \epsilon^{1/3} \, \Psi^{-2/3} \, k^{-5/3}$$

Exact computation of energy spectrum prefactor

- Four-wave (3-dimensional) collision integral simple enough to solve directly
- Derivative of collision integral will determine prefactor where $E_{\bf k}=\omega_{\bf k}n_{\bf k}\propto k^{2-x}$

$$I(x) = \int (q_1 q_2 q_3)^{2-x} (1 - q_1^y - q_2^y - q_3^y) (1 - q_1^x - q_2^x - q_3^x)$$

$$\times \delta (1 - q_1^2 - q_2^2 - q_3^2) \delta (1 - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3) d\mathbf{q}_1 d\mathbf{q}_2 d\mathbf{q}_3$$



Boué et al. Phys. Rev. B, 84, 064516, (2011)

• Collision integral convergent for 2 < x < 9/2

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \, \Lambda \, \kappa^{7/5} \, \epsilon^{1/5} \, k^{-7/5}$
- Six-wave nonlocality, with new effective *local* four-wave description:

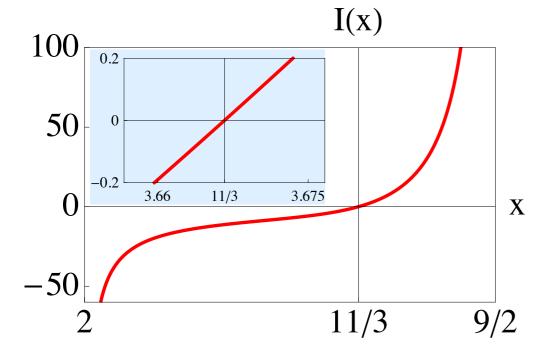
LN:
$$E_{\mathbf{k}} = C_{LN} \, \kappa \, \Lambda \, \epsilon^{1/3} \, \Psi^{-2/3} \, k^{-5/3}$$

Exact computation of energy spectrum prefactor

- Four-wave (3-dimensional) collision integral simple enough to solve directly
- Derivative of collision integral will determine prefactor where $E_{\bf k}=\omega_{\bf k}n_{\bf k}\propto k^{2-x}$

$$I(x) = \int (q_1 q_2 q_3)^{2-x} (1 - q_1^y - q_2^y - q_3^y) (1 - q_1^x - q_2^x - q_3^x)$$

$$\times \delta (1 - q_1^2 - q_2^2 - q_3^2) \delta (1 - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3) d\mathbf{q}_1 d\mathbf{q}_2 d\mathbf{q}_3$$



Boué et al. Phys. Rev. B, 84, 064516, (2011)

• Collision integral convergent for 2 < x < 9/2

x L'vov-Nazarenko spectrum prefactor

$$C_{LN} = (128\pi)^{1/3} \left(\frac{dI(x)}{dx} \Big|_{x=11/3} \right)^{-1/3} = 0.304$$

History of simulations

- Many previous simulations (Vinen & Tsubota; Kozik & Svisuntov; Barenghi & Baggaley)
- Resolution not sufficient to distinguish between KS and LN spectrum predictions

History of simulations

- Many previous simulations (Vinen & Tsubota; Kozik & Svisuntov; Barenghi & Baggaley)
- Resolution not sufficient to distinguish between KS and LN spectrum predictions

New Biot-Savart simulation

Baggaley, JL, Phys. Rev. B, 94, 025301, (2014)

- True statistical steady state: additive forcing and hyper-viscous dissipation
- No far-field approximations of Biot-Savart integral

History of simulations

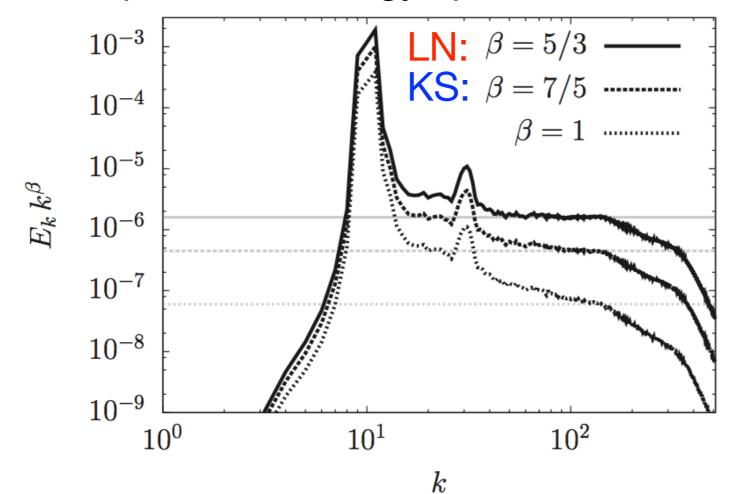
- Many previous simulations (Vinen & Tsubota; Kozik & Svisuntov; Barenghi & Baggaley)
- Resolution not sufficient to distinguish between KS and LN spectrum predictions

New Biot-Savart simulation

Baggaley, JL, Phys. Rev. B, 94, 025301, (2014)

- True statistical steady state: additive forcing and hyper-viscous dissipation
- No far-field approximations of Biot-Savart integral

Compensated energy spectrum



History of simulations

- Many previous simulations (Vinen & Tsubota; Kozik & Svisuntov; Barenghi & Baggaley)
- Resolution not sufficient to distinguish between KS and LN spectrum predictions

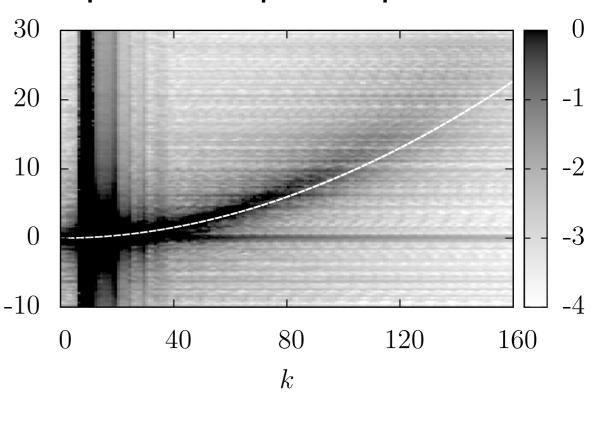
New Biot-Savart simulation

Baggaley, JL, Phys. Rev. B, 94, 025301, (2014)

- True statistical steady state: additive forcing and hyper-viscous dissipation
- No far-field approximations of Biot-Savart integral

Compensated energy spectrum

Spatio-temporal spectrum



History of simulations

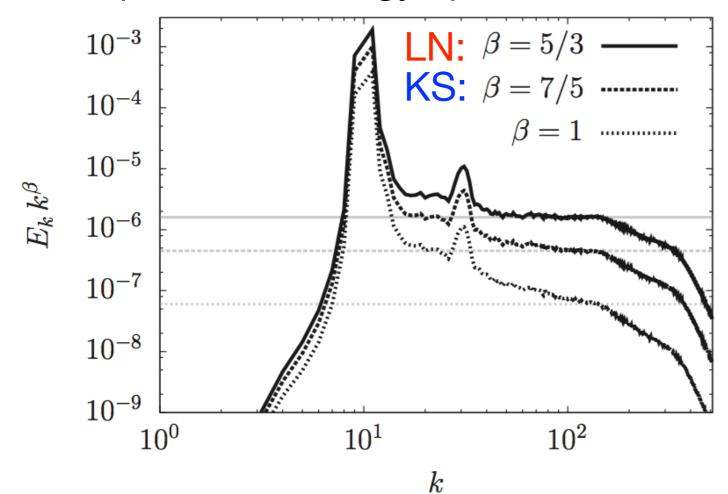
- Many previous simulations (Vinen & Tsubota; Kozik & Svisuntov; Barenghi & Baggaley)
- Resolution not sufficient to distinguish between KS and LN spectrum predictions

New Biot-Savart simulation

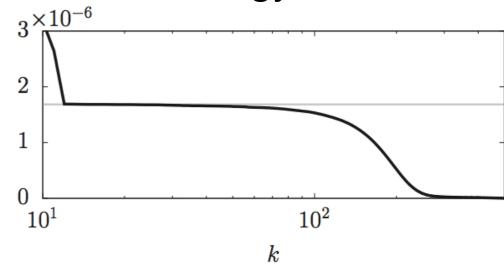
Baggaley, JL, Phys. Rev. B, 94, 025301, (2014)

- True statistical steady state: additive forcing and hyper-viscous dissipation
- No far-field approximations of Biot-Savart integral

Compensated energy spectrum



Energy flux



History of simulations

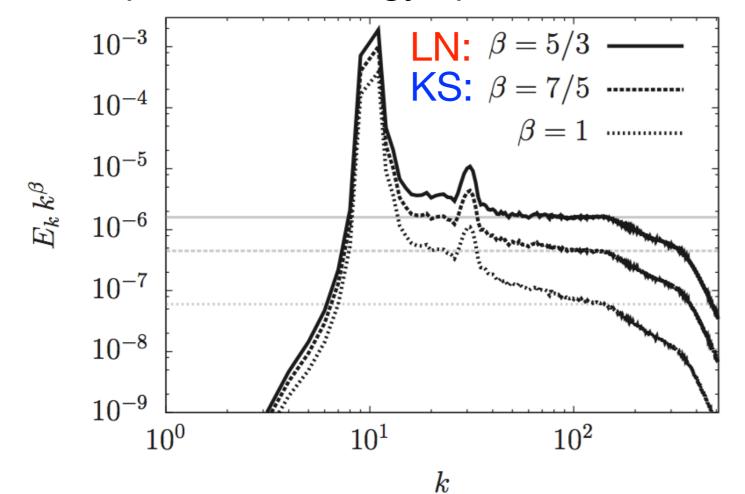
- Many previous simulations (Vinen & Tsubota; Kozik & Svisuntov; Barenghi & Baggaley)
- Resolution not sufficient to distinguish between KS and LN spectrum predictions

New Biot-Savart simulation

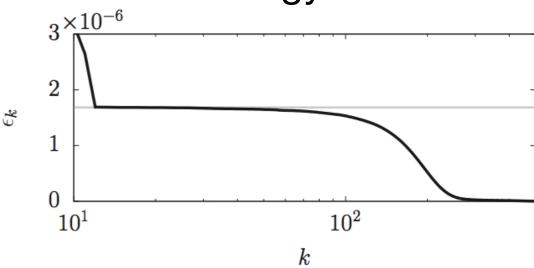
Baggaley, JL, Phys. Rev. B, 94, 025301, (2014)

- True statistical steady state: additive forcing and hyper-viscous dissipation
- No far-field approximations of Biot-Savart integral

Compensated energy spectrum



Energy flux



Measured prefactors

$$C_{LN}^{num} = 0.318$$
 $C_{KS}^{num} = 0.0087$

• Within 5% of theoretical $C_{LN}=0.304$

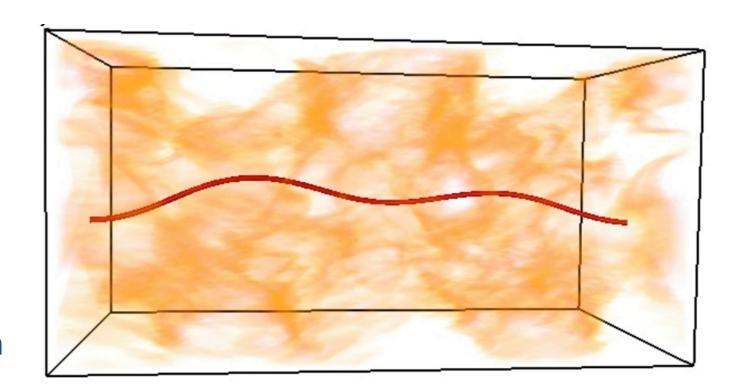
Gross-Pitaevskii equation

$$i\dot{\Psi} = -\nabla^2 \Psi + \Psi |\Psi|^2$$

Gross-Pitaevskii equation

$$i\dot{\Psi} = -\nabla^2\Psi + \Psi |\Psi|^2$$

- Decaying simulation of a quantum vortex with an initial large-scale distribution of Kelvin waves
- Vortex core accurately tracked
- Nonlocal prediction $E_{\mathbf{k}} \propto k^{-5/3}$ within error bars



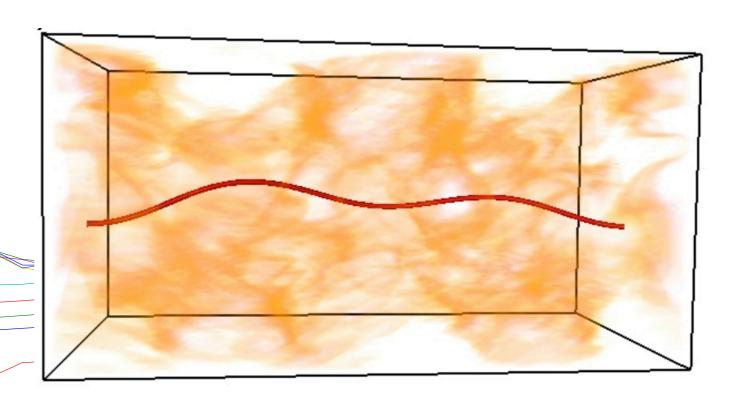
Krstulović, Phys. Rev. E, 86, 055301, (2012)

Gross-Pitaevskii equation

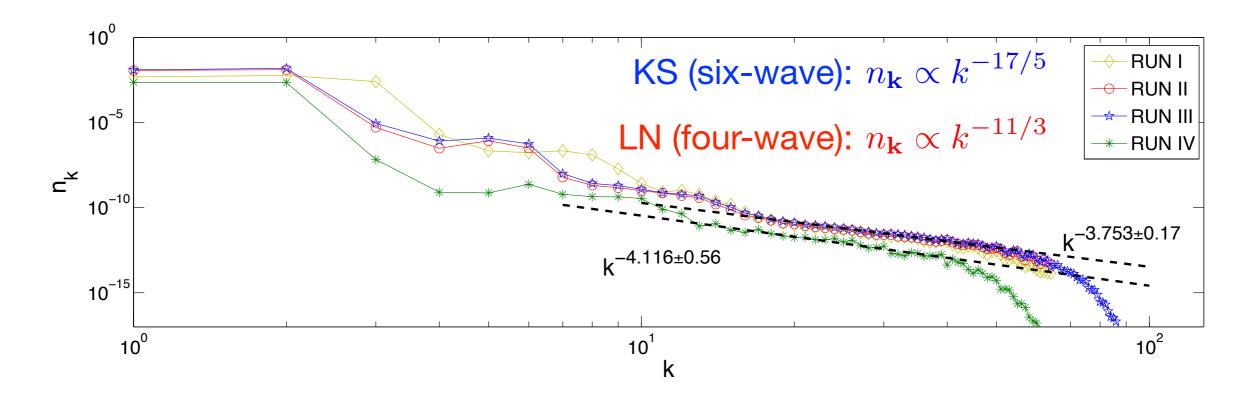
$$i\dot{\Psi} = -\nabla^2\Psi + \Psi |\Psi|^2$$

- Decaying simulation of a quantum vortex with an initial large-scale distribution of Kelvin waves
- Vortex core accurately tracked
- Nonlocal prediction $E_{\mathbf{k}} \propto k^{-5/3}$ within error bars

Wave action spectrum



Krstulović, Phys. Rev. E, **86**, 055301, (2012)



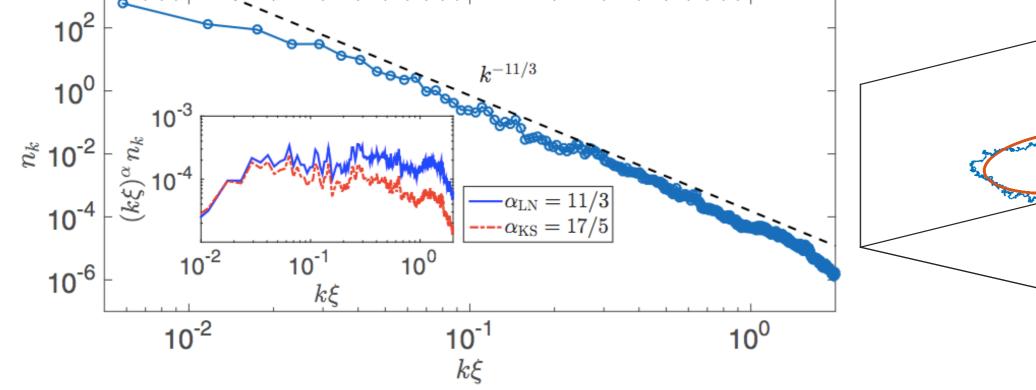
Gross-Pitaevskii equation

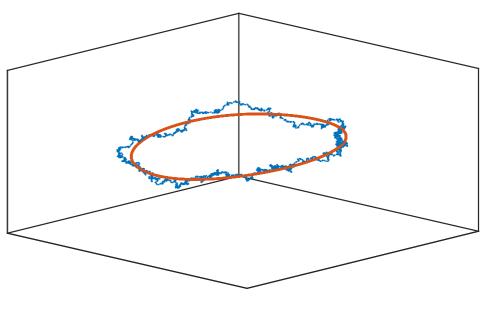
$$i\dot{\Psi} = -\nabla^2\Psi + \Psi |\Psi|^2$$

- Decaying simulation of a quantum vortex with an initial large-scale distribution of Kelvin waves
- Vortex core accurately tracked
- Nonlocal prediction $E_{\mathbf{k}} \propto k^{-5/3}$ within error bars

Wave action spectrum

Villois et al. Phys. Rev. E, 93, 061103(R), (2016)





Conclusions and Perspectives

Energy dissipation in small-scale QT

- Evidence to say that Kelvin-waves are important for small-scale energy transfer for polarized vortex tangles in homogeneous and isotropic turbulence
- Whether this remains valid for unstructured/anisotropic tangles is still an open questions

Conclusions and Perspectives

Energy dissipation in small-scale QT

- Evidence to say that Kelvin-waves are important for small-scale energy transfer for polarized vortex tangles in homogeneous and isotropic turbulence
- Whether this remains valid for unstructured/anisotropic tangles is still an open questions

Wave Turbulence description of Kelvin-wave cascade

- LIA description not sufficient: leading dynamics arise from full Biot-Savart dynamics
- Theoretical six-wave interactions break assumptions of locality leading to effective local four-wave description based upon nonlocal six-wave interaction
- Simulations in both Biot-Savart and Gross-Pitaveskii confirm four-wave description

Conclusions and Perspectives

Energy dissipation in small-scale QT

- Evidence to say that Kelvin-waves are important for small-scale energy transfer for polarized vortex tangles in homogeneous and isotropic turbulence
- Whether this remains valid for unstructured/anisotropic tangles is still an open questions

Wave Turbulence description of Kelvin-wave cascade

- LIA description not sufficient: leading dynamics arise from full Biot-Savart dynamics
- Theoretical six-wave interactions break assumptions of locality leading to effective local four-wave description based upon nonlocal six-wave interaction
- Simulations in both Biot-Savart and Gross-Pitaveskii confirm four-wave description

Perspectives

- Can we quantify the amount of energy transferred to Kelvin waves?
- Are Kelvin-waves weakly nonlinear in reality?
- Observation of Kelvin-wave cascade in velocity energy spectrum?