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Polarized vortex bundles and K41 Navier-Stokes
- Superfluid helium-4 has a two-fluid description of a ~ " |
viscous normal fluid coupled to an inviscid superfluid

At O Kelvin, helium-4 becomes a pure superfluid

- Similar characteristics appear in BECs

* In quantum fluids, vorticity is confined on zero density
defects (identically thin vortex lines) taking only
discrete values of circulation

* Analogies to classical vortex tubes appear through
local polarization of quantum vortex lines (bundles)

Leveque, She, (1993)
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Quantum vortex reconnections

 The classical-quantum vortex bundle analogy breaks
down at scales near or below the inter-vortex scale ¢

- Quantum vortex reconnections become important for
the redistribution of energy
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Turbulence at the Inter-vortex Scale aconunvesiy

Quantum vortex reconnections

 The classical-quantum vortex bundle analogy breaks
down at scales near or below the inter-vortex scale ¢

- Quantum vortex reconnections become important for
the redistribution of energy

Mechanisms of energy transport

1. Vortex ring emission

* Rings emitted from reconnection region, directly
transferring energy through tangle

2. Direct sound emission

* Phonon emission at reconnection point

3. Generation of Kelvin waves

* Energy and momentum transferred to helical

Kelvin waves that propagate along individual
quantized vortex lines




Quantum Vortex Ring Emission PAy—

Vortex ring cascade at large angles

« A vortex reconnection of two (almost) anti-parallel
vortices lead to a series of self-reconnections and
the emission of multiple vortex rings

- Critical angle for ring generation in the Biot-Savart
model is 6. ~ 0.9427

Kursa et al. Phys. Rev. B, 83, 014515, (2011)
Kerr, Phys. Rev. Lett. 106, 224501, (2011)
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Quantum Vortex Ring Emission

Vortex ring cascade at large angles

« A vortex reconnection of two (almost) anti-parallel
vortices lead to a series of self-reconnections and
the emission of multiple vortex rings

- Critical angle for ring generation in the Biot-Savart

Aston University

model is 6. ~ 0.9427 Kursa et al. Phys. Rev. B, 83, 014515, (2011)
Kerr, Phys. Rev. Lett. 106, 224501, (2011)

Reconnection angles in QT tangles

« Suppression of large angle reconnections in polarized
tangles

» Majority of reconnections will not lead to cascade

4% (Counterflow), 2% (Vinen), 1% (Polarized)

Modulational instability and self-reconnection

Vinen —&—
Counterflow —e—
Polarized

- Strongly nonlinear Kelvin waves can lead to
modulational instability and self reconnections

e —
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Salman, Phys. Rev. Lett. 111, 165301, (2013)
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The KGIVin Wave Cascade Aston University

Isotropic homogeneous small-scale QT
* Polarization inhibits ring emission

* Vortex reconnections transfer large-scale energy to
Kelvin waves at superfluid cross-over region

* Possible thermalisation at the inter-vortex scale

» Weakly nonlinear Kelvin wave interactions transfer
energy to even smaller scales
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Isotropic homogeneous small-scale QT
* Polarization inhibits ring emission
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» Weakly nonlinear Kelvin wave interactions transfer
energy to even smaller scales
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The Kelvin Wave Cascade

Isotropic homogeneous small-scale QT
* Polarization inhibits ring emission

* Vortex reconnections transfer large-scale energy to

Kelvin waves at superfluid cross-over region
Richardson

* Possible thermalisation at the inter-vortex scale cascade
» Weakly nonlinear Kelvin wave interactions transfer
energy to even smaller scales

Wave turbulence description of Kelvin-wave cascade

 Theory for the non-equilibrium statistical description of
the weakly nonlinear interaction of an ensemble of waves
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The KGIVin Wave Cascade Aston University

Isotropic homogeneous small-scale QT

* Polarization inhibits ring emission v/
* Vortex reconnections transfer large-scale energy to G O G
Kelvin waves at superfluid cross-over region
P d Richardson O O O O O
. . L L d
Possible thermalisation at the inter-vortex scale cascade 000000000
» Weakly nonlinear Kelvin wave interactions transfer 000000000000
energy to even smaller scales e g
C : Q
Wave turbulence description of Kelvin-wave cascade l s
o)
 Theory for the non-equilibrium statistical description of >
the weakly nonlinear interaction of an ensemble of waves ‘MM
_ _ Kelvin-wave e
Main theoretical results cascade WM.

1. Nonlinear kinetic wave equation i v

2. Steady-state power-law spectra for constant flux transfer of invariants Ph°"°’kt

3. But can easily study nonlinear evolution of higher-order moments and
amplitude PDFs
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Biot-Savart Hamiltonian description
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The Wave Turbulence Setup

Biot-Savart Hamiltonian description

. K r —=S ><d
S — — Ir
47'(' £|r—s‘3

- Consider deviations s = |z(z,1),y(z,1), z(t)] around
straight vortex line configuration periodic in z

. Ja OH
alz,t) = x(z,t) +1y(z, T K — —
(1) = ol t) Fiy(at)  in =

Aston University
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Biot-Savart Hamiltonian description

K r —s rEy=0
S = — = x dr y —
47'(' Ve |r — S‘ ~ i
- Consider deviations s = |z(z,1),y(z,1), z(t)] around \l\
straight vortex line configuration periodic in z | —
. OJda  OH < |
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Biot-Savart Hamiltonian description

K r —s rEy=0
S = — z X dr y
47'(' Ve |r — S‘ S~ i
- Consider deviations s = |z(z,1),y(z,1), z(t)] around
straight vortex line configuration periodic in 2 —~
~da  OH «
a(z,t) = x(z,t) + iy(z, 1) ik— =
ot dar o s = [2(), 4(2), 2]

1 4+ Rela™(z1)a’(z2)]
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Biot-Savart Hamiltonian description

K r —s rEy=0
S = — z X dr y
47 L |r — S‘ ~ i
- Consider deviations s = |z(z,1),y(z,1), z(t)] around
straight vortex line configuration periodic in 2 | —
da M |
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Biot-Savart Hamiltonian description

K r —s rEy=0
S = — z X dr y
47 L |r — S‘ ~ i
- Consider deviations s = |z(z,1),y(z,1), z(t)] around
straight vortex line configuration periodic in 2 | —
da M |
a(z,t) = a(z,t) +iy(st) e = O —
ot oa < s = [0(2), y(2), 2

1 4+ Rela™(z1)a’(z2)]

/ ledZQ < |

47T 2

\/ Zl — 22 —|‘ ‘CL(Zl) — &(22)| \l\
Truncation and weak nonlinear expansion l z

- Regularization of integral by introducing cut-off & < |22 — 21|

- Expand Hamiltonian in powers of the canonical variable:

_ lalz) —a(=)] M — Moyt Hoa 4 Hes 4 -
21 — 22
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- Introduce wave action variables a(z,t) = k"% " ax(t) exp(i k 2)
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Wave action representation of the Hamiltonian

- Introduce wave action variables a(z,t) = k"% " ax(t) exp(i k 2)

k
H = Zwkakak —|— Z T 4 aiasasay O Z Wig a1Q2030,0: A (ﬁ)’?’é
1,2,3 4 1,2,3 4,5,6
a, = ay, (t) Ty = T(ki, ko, k3, ky) 633 = 0 (ki + ko — k3 — ky)
Interaction coefficients
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s STK 32TK <

. Separate Iogarithm divergent terms by introducing an effective length scale fef

. ]-" 4 and 94 ° are terms containing logarithmic contrlbutlons




Leading Order Integrability Aston Universicy

Local Induction Approximation (LIA)

- If the cutoff is small then terms proportional to A give
greatest contribution and diverge in the limit £ — 0

- Keeping only the leading divergent terms, then the
Hamiltonian becomes

lizA 2
J— /
H = o /\/1+]a(z)\ dz

- Shown to be equivalent to the Local Induction Approximation (LIA)

* LIA implies only neighbouring vortex elements determine evolution and corresponds
to integrable dynamics

- Subleading in A (non-LIA) terms are essential for turbulent Kelvin-wave interactions
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Local Induction Approximation (LIA)

- If the cutoff is small then terms proportional to A give
greatest contribution and diverge in the limit £ — 0

- Keeping only the leading divergent terms, then the
Hamiltonian becomes

lizA 2
J— /
H = o /\/1+]a(z)\ dz

- Shown to be equivalent to the Local Induction Approximation (LIA)

* LIA implies only neighbouring vortex elements determine evolution and corresponds
to integrable dynamics

- Subleading in A (non-LIA) terms are essential for turbulent Kelvin-wave interactions

Double expansion in nonlinearity ¢ << 1 and divergence A=! « 1
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Wave resonance
- Waves only transfer energy and momentum to each other when in resonance

- In principle, only need to expand Hamiltonian up to first nonlinear term: H = Ha + H4

Mode evolution equation
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Wave resonance
- Waves only transfer energy and momentum to each other when in resonance

- In principle, only need to expand Hamiltonian up to first nonlinear term: H = Ha + H4

Mode evolution equation

,3&1{ 57‘[ 1 1.2 1.2
| — = = WrLaK + — 1,0 atasas 05
ot da; T2 2 T 373k
1,2,3
- Change variable into rotating coordinate frame by, = ay exp (7 w t)
Ob, 1

172 * ]-,2 . 1,2
ZW =3 Z TS,k b1b2b3 5371{ exp (—z W3’} t)
1,2,3



Nonlinear Wave Resonance - AN

Wave resonance
- Waves only transfer energy and momentum to each other when in resonance

- In principle, only need to expand Hamiltonian up to first nonlinear term: H = Ha + H4

Mode evolution equation
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Wave resonance
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Wave resonance
- Waves only transfer energy and momentum to each other when in resonance
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Wave resonance
- Waves only transfer energy and momentum to each other when in resonance

- In principle, only need to expand Hamiltonian up to first nonlinear term: H = Ha + H4

Mode evolution equation
,8&1{ OH 1 1.2 1,2
| —— = - = Wgak + 3 Z T3 K a1a2a§ 53’k
ot 5ak 2 ) ’
1,2,3
- Change variable into rotating coordinate frame by, = ayx exp (7 w t)

(%k C1,2
— E b1b2b3 53 i €xXD ( —tws’y t)
1,2,3
- Main nonlinear contribution when frequencies cancel: w

Four-wave resonance condition Momentum conservation
ki +kos=ks+ k

 This means that there are
essentially two delta functions: W1 — W2 = W3 T Wk

2
k:w1+w2—w3—wk=O

W

Energy conservation
* Only trivial resonances can solve resonance condition for Kelvin-wave frequency

k1 — kg, k2 — k, or k1 — k, k2 — k3



Six-Wave Interactions - Universicy




Six-Wave Interactions - Universicy

Canonical transformation



Six-Wave Interactions - Universicy

Canonical transformation
* Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics




Six-Wave Interactions - Universicy

Canonical transformation
* Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics

» A classical canonical transformation ax — Ck can be used to express Hamiltonian in
new variables so non-resonant 4-wave terms do no appear



Six-Wave Interactions - Universicy

Canonical transformation
* Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics

» A classical canonical transformation ax — Ck can be used to express Hamiltonian in
new variables so non-resonant 4-wave terms do no appear

- Through the transformation, quartic interactions re-appear as sextic Hg contributions



Six-Wave Interactions - Universicy

Canonical transformation
* Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics

» A classical canonical transformation ax — Ck can be used to express Hamiltonian in
new variables so non-resonant 4-wave terms do no appear

- Through the transformation, quartic interactions re-appear as sextic Hg contributions

X 3



Six-Wave Interactions - Universicy

Canonical transformation
* Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
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» A classical canonical transformation ax — Ck can be used to express Hamiltonian in
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Canonical transformation
* Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics

» A classical canonical transformation ax — Ck can be used to express Hamiltonian in
new variables so non-resonant 4-wave terms do no appear

- Through the transformation, quartic interactions re-appear as sextic Hg contributions

)@:\"(+

Six-wave interaction coefficient of Hg

. TA o TA TLoTh TATL TATA
W=Wrt Wt e Wl O (AT

\ W K W W (wA) g

=0 # 0
Divergent terms that Leading order terms describing
correspond to LIA cancel Kelvin-wave dynamics




Kinetic Wave Equation PAT—

Wave action density




Kinetic Wave Equation PAT—

Wave action density

- Of particular interest is the second order correlator function <akaik<1> = nkd(k — ki)



Kinetic Wave Equation PAT—

Wave action density

- Of particular interest is the second order correlator function <akaik<1> = nkd(k — ki)

* WWave energy density is related to the wave action by Fy = winy



Kinetic Wave Equation PAT—

Wave action density

- Of particular interest is the second order correlator function <akaik<1> = nkd(k — ki)
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Wave action density

- Of particular interest is the second order correlator function <akaik<1> = nkd(k — ki)

* WWave energy density IS related to the wave action by Fy = wyrni
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* One solution corresponds to constant energy transfer to small scales by Kelvin-waves
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Wave action density

- Of particular interest is the second order correlator function <akaik<1> = nkd(k — ki)
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Wave action density

- Of particular interest is the second order correlator function <akaik<1> = nkd(k — ki)

* WWave energy density IS related to the wave action by Fy = wyrni

(9n
Tk / |Wi igl‘i 0 (wigi) N1MNoN3NANENK
1 1 1
X { | | } dk; dks dks dk, dks
3% ns Nne (5] (% 13

* One solution corresponds to constant energy transfer to small scales by Kelvin-waves

E, =CrsAx"P /575 Kozik-Svistunov Energy Spectrum

Locality

» With any KZ solutions, convergence of the collision integral must be ensured in order
for the realizability of the stationary state
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that six-wave collision integral diverges in the limit of two long

Kelvin-waves

- Effective four-wave interaction takes place on curved vortex line

Effective four-wave kinetic description

1 L et al. Phys. Rev. B, 81, 104526, (2010) ;

t L'vov, Nazarenko, Low Temp. Phys. 36, 785, (2010) ‘
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Effective four-wave kinetic description
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Effective Four-Wave Description

Nonlocal wave interactions

Aston University

- Exact calculation of interaction coefficient enabled us to prove

that six-wave collision integral diverges in the limit of two long
Kelvin-waves

- Effective four-wave interaction takes place on curved vortex line

1 L et al. Phys. Rev. B, 81, 104526, (2010) ;

i L'vov, Nazarenko, Low Temp. Phys. 36, 785, (2010) |

Effective four-wave kinetic description

3nk 687'(' 1.2.3,2 1 1 1 1 k k
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Alternative Kolmogorov-Zakharov solution

E, = Cy A"/5 /3 0—2/3 =3/3 |’vov-Nazarenko Energy Spectrum
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-+ Six-wave description with assumed locality: KS: E,, = Crxg Ak"/° el/? =7/5
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local four-wave description: LN: By = CrnkAel/3—2/3 =5/3
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- Four-wave (3-dimensional) collision integral simple enough to solve directly
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- Derivative of collision integral will determine prefactor where Ex = wyxnx < kK~
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50 ¢ » Collision integral convergent for 2 < z < 9/2
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Gross-Pitaevskii equation
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* Decaying simulation of a quantum
vortex with an initial large-scale

distribution of Kelvin waves
* Vortex core accurately tracked

- Nonlocal prediction B} oc k~°/3 within
error bars

Wave action spectrum

0

Aston University

{ Krstulovié, Phys. Rev. E, 86, 055301,

2) |

(201

10 ' | ' ' ' ' ' —
‘N . —17/5 RUN |
- KS (six-wave): ny o k RN
1075 1 " _11/3 | RUNII
s S LN (four-wave): ny x k % RUN IV
X
C
1071 .
k—3.753:0.1 7
10+ -
| e, |
10° 10 10°



|dentification of Spectrum PAR—

Gross-Pitaevskii equation
i = —V20 + U |0
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Wave action spectrum
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questions

Wave Turbulence description of Kelvin-wave cascade

» LIA description not sufficient: leading dynamics arise from full Biot-Savart dynamics

- Theoretical six-wave interactions break assumptions of locality leading to effective
local four-wave description based upon nonlocal six-wave interaction

- Simulations in both Biot-Savart and Gross-Pitaveskii confirm four-wave description

Perspectives

- Can we quantify the amount of energy transferred to Kelvin waves?

- Are Kelvin-waves weakly nonlinear in reality?
- Observation of Kelvin-wave cascade in velocity energy spectrum?



