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Motivation: vortices and more vortices

• wing-tip vortices (NASA)


• draining Lake Texoma, USA 



Turbulence

• Leonardo da Vinci’s sketch 


• vortices in turbulence simulations


• vortices in quantum turbulence 



Instabilities

• von Karman vortex street


• Crow instability


• Kelvin-Helmholtz instability


• Widnall vortex ring instability



Navier-Stokes and Euler equations

• Take constant density, constant viscosity, incompressible flow and write


• with kinematic viscosity                and replacing         by     for convenience


• Euler equation for ideal flow               (highly singular limit)

or
Dt⇢+ ⇢r · u = 0, (2.25)

which captures nicely the idea that the density of a fluid element changes, by
Dt⇢, decreasing if the divergence of the fluid flow r · u > 0, and increasing if
r · u < 0.

2.5 Navier–Stokes equation again

We now have the Navier–Stokes equation (2.14) and the continuity equation
(2.23), amounting to 4 equations in 3-d space, for 5 quantities, the components
ui of u, p and ⇢. The system would need to be completed by an equation of
state, for example linking pressure to density.

We will however adopt the simplest fluid dynamical system in which to under-
stand vortex dynamics and topological aspects, taking the dynamic viscosity
µ and density ⇢ to be constant (and uniform in space). Then the continuity
equation expresses that the fluid flow u is divergenceless, and with this we
can also rewrite the Navier–Stokes equation as:

Dtu = @tu+ u ·ru = �rp+ ⌫r2u, r · u = 0. (2.26)

Here we have divided through by the constant ⇢ and replaced p/⇢ by p (to
avoid too many symbols!). The kinematic viscosity ⌫ = µ/⇢ is a constant, and
we usually refer to this as just the viscosity in what follows.

2.6 Euler equation for ideal flow

The Euler equation is the case of (2.26) without viscosity ⌫ = 0, and forms
the basis of much of our discussion below:

Dtu = @tu+ u ·ru = �rp, r · u = 0. (2.27)

Setting ⌫ = 0 in (2.26) is a highly singular limit as ⌫ multiplies the highest
derivatives in the equation! A fluid with ⌫ = 0 is also described as an ideral

fluid — there is no friction and no dissipation of energy. The Euler equation
can be written in the attractive form

@tu = u⇥ ! �rP, (2.28)

(using vector calculus identity (2.5)), where the Bernoulli function is

P = p+ 1
2u

2 (2.29)

and the vorticity is given by

! = r⇥ u, (2.30)
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Vorticity equation 

• Take the curl of


• to obtain vorticity equation for ideal flow 


• or for non-zero viscosity


• eliminates pressure but still have the tricky link 

This can also be written in the attractive form

⇥tu = u⇥ � �⌅P

where the Bernoulli function is

P = p + 1
2u

2

and the vorticity is given by
� = ⌅⇥ u

which is another solenoidal vector field

⌅ · � = 0

Note that by taking the divergence, the pressure is given by

⌅2P = ⌅ · (u⇥ �)

Actually we have lapsed here: P is the Bernoulli function, but we often slip
into calling the pressure. Whatever it is called, obtaining P is thus a non-
local procedure: the flow and vorticity at all points in the domain a�ect all
other points. In a numerical code, this Poisson equation has to be solved each
time-step.

Taking the curl eliminates the pressure and gives the vorticity equation

⇥t� = ⌅⇥ (u⇥ �)

or
Dt� = ⇥t� + u ·⌅� = � ·⌅u

This latter equation shows the � is transported with the fluid flow (left-hand
side) but also undergoes stretching and rotation (right-hand side). Technically
it is Lie-dragged in the flow and for this reason vorticity (rather than velocity)
plays a central role in discussion of topological fluid mechanics. In other words
given a flow u, the above equation carries vectors � as though they each join
two infinitesimally close fluid particles. Here the Lie bracket of two vector
fields is defined as

[u, v] = u ·⌅v � v ·⌅u

It is antisymmetric [u, v] = �[u, v] and satisfies the Jacobi identity

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0

For more information, see books on di�erential geometry, for example that of
Schultz [16].

In the ideal case we also have boundary conditions: in a finite domain D we
impose a no normal flow condition

n · u = 0 (r ⇤ S)

5

which is another divergence-free vector field

r · ! = 0, (2.31)

(by vector calculus identity (2.10)). We haver·u = 0 by incompressibility, but
that is only an approximation (no fluid is absolutely incompressible), whereas
r · ! = 0 exactly as ! is defined as the curl of u.

Note that by taking the divergence, the pressure is given by

r2P = r · (u⇥ !). (2.32)

Actually we have made a slight lapse here: P is actually the Bernoulli function,
but we often slip into calling the pressure. Whatever it is called, obtaining P is
thus a non-local procedure: the flow and vorticity at all points in the domain
a↵ect all other points. In a numerical code, this Poisson equation has to be
solved each time-step.

2.7 Vorticity equation, advection and di↵usion of vorticity

Taking the curl in (2.28) eliminates the pressure term involving rP , and gives
the vorticity equation

@t! = r⇥ (u⇥ !), (2.33)

or (using (2.7)),

Dt! = @t! + u ·r! = ! ·ru. (2.34)

This is for ideal flow, whereas for ⌫ > 0 we have instead

Dt! = @t! + u ·r! = ! ·ru+ ⌫r2!, (2.35)

or we can replace either the nonlinear terms or the viscous term giving

@t! = r⇥ (u⇥ !)� ⌫r⇥ (r⇥ !). (2.36)

The vorticity equation, however it is written, looks much simpler than the
Navier–Stokes equation as the pressure has been eliminated from the equation.
In many ways it is much easier to think of the behaviour of vorticity without
the non-local pressure field to deal with, and this is the great benefit of working
with vorticity instead of velocity. But, some of this simplicity is illusory as the
flow velocity u has to be found from inverting the curl ! = r ⇥ u. This
can be written as a Biot–Savart integral (compare finding the magnetic field b
arising from a given current distribution j = r⇥b in magnetostatics). Overall
solving this equation ! = r⇥ u for u amounts to obtaining the pressure by
solving the elliptic equation (2.32).
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Vortex filament motion

• local approximations giving the motion of a thin tube of vorticity - a vortex 
filament 

• by Helmholtz and Kelvin, the filament moves and stretches with the fluid 
motion


• we can also invert                            by the Biot-Savart law


• combines dynamics and differential geometry of curves 



Vortex filament: Biot-Savart integral

• integral links velocity to vorticity (suppress time-dependence)


• take vorticity confined to a thin tube along a curve      and has circulation 
(integral of vorticity across a surface area) of


• orthonormal Serret-Frenet basis


•  arclength   , curvature   , torsion 



Local velocity from a filament

• filament through origin O with axes             aligned with                   (at O)


•                                          as  


• look at velocity at a point                         in plane perpendicular to vortex at O 



Integration to give local flow

• Biot-Savart along a filament


• from a local length is


• put point                                              and


• we want to be close to the filament            , leaving 



Local flow 

• at position


• flow is


• including strong local circulation, which does not move the filament 


• and a weaker flow in the binormal direction


• has a logarithmic dependence on cut-off and vortex filament width


• treat as a constant: velocity of vortex filament is now


• or by rescaling time,                                      



Local induction approximation (LIA) 

• points            on the curve          with Serret-Frenet 


• and velocity 


• or 


• beautiful but highly idealised : no vortex stretching, only local induction, 
vortex width and cut-off scale fudged



Evolution of curvature and torsion - I

• dash for     derivative


• general motion (for present)


• now             and so                                               with


• have                          and 


• equate these gives                                   with      



Evolution of curvature and torsion - II

• dash for     derivative


• general motion (for present)


• have                                        and


• equate these gives                                  with


• have linked A, B, C, D, E, F, G, H, K to velocity components in     



Evolution of curvature and torsion - III

• to close the system we use the fact that               is an orthonormal basis


• and so


• with 


• we have   



Equations for curvature and torsion 

•             gives equation from arc-length parameterisation


•             and               give


• or for LIA 



Equations for curvature and torsion under LIA  

• a lot of manipulation… gives


• prime denotes derivative with respect to arclength


• …link to nonlinear Schrodinger equation (integrable PDE)… 



Knot evolution under LIA

• Ricca, Samuels, Barenghi: evolve a torus knot under LIA 



Evolution of F(2,3) and F(3,2) under LIA 



Evolution of F(3,2) under LIA and Biot-Savart



William Irvine and collaborators (Chicago)

•  vortex rings created by dragging a knotted aerofoil through water:


• https://www.youtube.com/watch?v=YCA0VIExVhg  (1:10)


• https://www.youtube.com/watch?v=9CnilX-oLrI


• https://www.youtube.com/watch?v=LdOX24KwSUU


• https://www.youtube.com/watch?v=CoUglS21w6c

https://www.youtube.com/watch?v=YCA0VIExVhg
https://www.youtube.com/watch?v=9CnilX-oLrI
https://www.youtube.com/watch?v=LdOX24KwSUU
https://www.youtube.com/watch?v=CoUglS21w6c


Vortex stretching

• this important phenomenon is not in the LIA though it appears in more 
sophisticated models


• intense fine-scale vortices seen in 3-d turbulence


• vortex stretching creates fine scales


• question of the regularity of the 3-d Euler equation:


• starting with smooth initial conditions, does the solution remain smooth for 
all time?


• fundamental, unsolved problem: 

Jörg Schumacher



Clay Millenium prizes 
• In order to celebrate mathematics in the new millennium, The Clay 

Mathematics Institute of Cambridge, Massachusetts (CMI) has named 
seven Prize Problems. The Scientific Advisory Board of CMI selected these 
problems, focusing on important classic questions that have resisted 
solution over the years.


• Birch and Swinnerton-Dyer Conjecture


• Hodge Conjecture


• Navier-Stokes Equations


• P vs NP


• Poincaré Conjecture     --- proven!


• Riemann Hypothesis


• Yang-Mills Theory

http://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/
http://www.claymath.org/millennium/Hodge_Conjecture/
http://www.claymath.org/millennium/Navier-Stokes_Equations/
http://www.claymath.org/millennium/P_vs_NP/
http://www.claymath.org/millennium/Poincare_Conjecture/
http://www.claymath.org/millennium/Riemann_Hypothesis/
http://www.claymath.org/millennium/Yang-Mills_Theory/


Navier-Stokes equations 



Idealised vorticity stretching

• full equation


• idealised ODE


• solution


• singular blow-up at time 


• but: vorticity tends to stretch perpendicular vorticity, not itself


• problem of geometrical complexity 


• e.g. no stretching (no singularity) in two dimensions



Beale-Kato-Majda theorem 

• rigorous result


• Suppose we start with a smooth Euler flow at time           and that at time        
it is no longer smooth. Then, necessarily


• clear numerical criterion to capture any loss of smoothness


• eliminates certain types of singularities, e.g. if the maximum                       
then  



Exact solutions of blow-up 

• Let A be any symmetric trace-free matrix, then 


• satisfies the Euler equation. But infinite energy, blows up everywhere at 
once, even in 2-d


•  flows of the form 


• e.g., in 2-d channel


• can show blow-up, e.g., 



Colliding vortices

• in 2-d a vortex pair of opposite signs translates, and similarly in 3-d


• no vortex stretching though


• try two pairs at right angles



Colliding vortex pairs: Moffatt

• idea: two vortex pairs propagate towards, and stretch, each other


• vorticity intensified, feedback to faster evolution


• singularity? not clear ; viscosity may not stop a singularity if it occurs 



Colliding vortex pairs: Pelz 

• 8 pairs colliding; highly symmetrical flow


• using vortex filaments under Biot-Savart blow-up very clean


• but actual vortices tend to flatten, depleting nonlinearity in simulations 



Evolution of anti-parallel vortices: Kerr/Bustamante

• vorticity intensifies strongly


• and flattens to form tadpole structures


• singularity at t* = 18.7 ? 



Vortex ring collisions in three dimensions

• https://www.youtube.com/watch?v=XJk8ijAUCiI


• https://www.youtube.com/watch?v=USzOciNHeh0&t=182s


• vortex rings move with the fluid (Helmholtz) 


• then stretch (vortex line stretching) and accelerate outwards - how quickly?


• geometry: 


• approximate 2-d dipole travelling outwards 

https://www.youtube.com/watch?v=XJk8ijAUCiI
https://www.youtube.com/watch?v=USzOciNHeh0&t=182s


Theoretical ideas 

• Childress, G, Valiant 2016


• major and minor axes         ,  


• conserve volume:


• problem… energy diverges: 



Theoretical ideas 

• Childress, G, Valiant 2016


• major and minor axes         ,  


• conserve energy:


• necessarily, volume goes down, vorticity shed  



Vorticity shedding

• original picture a bit naive


• conserve energy:


• necessarily, volume goes down


• must `lose’ volume: shedding of vorticity in a tail behind the propagating 
vortex ring pair (visible on movies)


• `tadpole’ or `snail’ structure emerges



Simulations 

• in axisymmetric flow


• only one ring shown 



Loss of symmetry

• up/down symmetry can be lost:


• also experiments reveal instabilities



More general geometry 

• Bustamante & Kerr 2008



Conclusions

• vorticity perhaps best way to understand nearly inviscid flows


• many challenges both for mathematics and analysing physical processes


• such as stretching and reconnection


• with links to outstanding theoretical issues such as the finite-time singularity 
question ….


• … and the nature of turbulence. 


