

Variability of Stochastically Forced Zonal Jets

Laura Cope, Peter Haynes

Department of Applied Mathematics and Theoretical Physics, University of Cambridge

MOTIVATION

Gaseous Giant Planets

Earth's Atmosphere & Oceans

What insights can we learn about the variability of jet streams using idealized models?

Credit: NASA / Science Photo Library

Credit: NASA/JPL-Caltech/Space Science Institute

OBSERVATIONS

OBSERVATIONS

OVERVIEW OF IDEALIZED MODELS

Generalized Quasilinear Approximation

Reference: Marston, Chini, Tobias (2016)

Increasing zonal wavenumber

Generalized Low modes $\leq \Lambda$ Quasilinear Approximation Separation = Λ **Reference**: High modes $> \Lambda$ 0 Marston, Chini, Increasing zonal Tobias (2016) 0 0 0 wavenumber

Generalized Low modes $\leq \Lambda$ Quasilinear Approximation Separation = Λ **Reference**: High modes $> \Lambda$ 0 Marston, Chini, Increasing zonal Tobias (2016) Q 0 0 wavenumber

Generalized Quasilinear Approximation	
Low-high mode decomposition:	$\psi = \sum_{ m \leq \Lambda} e^{imx} \widehat{\psi_m} + \sum_{ m > \Lambda} e^{imx} \widehat{\psi_m} = \overline{\psi} + \psi'$
Basic vorticity equation:	$\frac{\partial \zeta}{\partial t} = \mathcal{L}[\zeta] + \mathcal{N}[\zeta, \zeta]$
Low modes:	$\frac{\partial \zeta}{\partial t} = \mathcal{L}[\bar{\zeta}] + \bar{\mathcal{N}}[\bar{\zeta},\bar{\zeta}] + \bar{\mathcal{N}}[\zeta',\zeta']$
High modes:	$\frac{\partial \zeta'}{\partial t} = \mathcal{L}[\zeta'] + \mathcal{N}'[\bar{\zeta}, \zeta'] + [HHNL]$
Vorticity equation:	$\left[\frac{\partial \zeta}{\partial t} + \boldsymbol{u} \cdot \nabla \zeta + \boldsymbol{\beta} \boldsymbol{v} - [\text{HHNL}] = \boldsymbol{\xi} - \boldsymbol{\mu} \boldsymbol{\zeta} + \boldsymbol{\nu}_n \nabla^{2n} \boldsymbol{\zeta}\right]$

SUMMARY OF IDEALIZED MODELS

Reduction in nonlinearity

NUMERICAL SIMULATIONS – NONLINEAR (NL) MODEL

NONLINEAR (NL) MODEL – TYPES OF VARIABILITY

A CLOSER LOOK AT ZONAL JET MIGRATION

Question 1

Why do jets migrate only when $\Lambda \ge 1$?

Question 2

Can we predict the speed of migration?

Question 3

Do jets migrate in more complex systems?

A CLOSER LOOK AT ZONAL JET MIGRATION

Question 1

Why do jets migrate only when $\Lambda \ge 1$?

Question 2

Can we predict the speed of migration?

Question 3

Do jets migrate in more complex systems?

AN INTRODUCTION TO ZONONS

Zonons (Nonlinear waves)

Coherent structures excited by Rossby waves with same k_x and same phase speed

Linear Rossby wave

Reference: Sukoriansky, Dikovskaya, Galperin (2008), PRL

AN INTRODUCTION TO ZONONS

Zonons (Nonlinear waves)

Coherent structures excited by Rossby waves with same k_x and same phase speed

Linear Rossby wave

Reference: Sukoriansky, Dikovskaya, Galperin (2008), PRL

AN INTRODUCTION TO ZONONS

Zonons (Nonlinear waves)

Coherent structures excited by Rossby waves with same k_x and same phase speed

Linear Rossby wave

Reference: Sukoriansky, Dikovskaya, Galperin (2008), PRL

Result 3 Migration requires an asymmetric eddy forcing and mean flow

A CLOSER LOOK AT ZONAL JET MIGRATION

Question 1

Why do jets migrate only when $\Lambda \ge 1$?

Question 2

Can we predict the speed of migration?

Question 3

Do jets migrate in more complex systems?

Q2: CAN WE PREDICT THE SPEED OF MIGRATION?

Q2: CAN WE PREDICT THE SPEED OF MIGRATION?

A CLOSER LOOK AT ZONAL JET MIGRATION

Question 1

Why do jets migrate only when $\Lambda \ge 1$?

Question 2

Can we predict the speed of migration?

Question 3

Do jets migrate in more complex systems?

Q3: DO JETS MIGRATE IN MORE COMPLEX SYSTEMS?

General circulation model: Poleward drift

> Kemke & Kaspi (2015), JAMES

General circulation model: Equatorward drift

> Young, Read & Wang (2019), Icarus

Atmosphere observations: Poleward drift

Feldstein (1998), JAS

CONCLUSIONS

Study of jet stream variability

MODELS

Rotation + turbulence + friction = zonal jet

METHOD

Generalized quasilinear approximation

CONCLUSIONS

New type of jet variability found: migrating jets $\begin{array}{l} \mbox{Migration requires} \\ \Lambda \geq 1 \mbox{ when jets} \\ \mbox{and zonons coexist} \end{array}$

3

Migration requires an asymmetric eddy forcing Migration speed is approximately: speed $\propto (ZMF)^{-3}$

