Extreme events in lasers

Giovanna Tissoni Institut de Physique de Nice, Sophia Antipolis (France)

Aston, December 11-12, 2017

Wave Turbulence in Nonlinear Optics, BECs, and Related Areas

Collaborators

Theory

- M. Brambilla, L. Columbo (Università e Politecnico di Bari, Italy)
- F. Prati (Università dell'Insubria, Como, Italy)
- C. Rimoldi (Université Côte d'Azur, INPHYNI, Nice, France)
- Experiment
 - S. Barland, f. Gustave, P. Walczak (Université Côte d'Azur, CNRS, INPHYNI, Nice, France)

Outline

1 Extreme events and localized structures

2 Broad-area semiconductor laser with saturable absorber

- Extreme event analysis and optimization
- Comparison with cavity solitons

3 Semiconductor ring laser with injection

- Phase solitons and complexes
- Extreme events from collisions
- Abnormal events in unstable roll regime

4 Broad-area semiconductor laser with injection

- Cavity soliton interaction
- Extreme event investigation

5 General conclusions

Extreme events

Extreme events in nature and society (natural disasters, market crashes, pandemics etc.)

Wikimedia Commons - Public Domain

Extreme events

Extreme events in nature and society (natural disasters, market crashes, pandemics etc.)

statistical and dynamical approach

- possible analogies in different contexts
- generating mechanisms and predictability

Wikimedia Commons - Public Domain

Extreme events

- Extreme events in nature and society (natural disasters, market crashes, pandemics etc.)
- statistical and dynamical approach
 - possible analogies in different contexts
 - generating mechanisms and predictability

Wikimedia Commons - Public Domain

What are extreme events?

Events that lie in the tail of a probability distribution, presenting a deviation from the global data behavior (ex. heavy tails). [Jentsch 2006, Springer]

A particular kind of extreme events

Rogue waves

Isolated high-peak **oceanographic** extreme events that appear and disappear into nothingness.

→ More frequent than expected by gaussian statistics. [Kharif 2009, Springer]

↓ Formal analogy with **fiber optics** through the Nonlinear Schrödinger Equation. [Solli 2007, Nature]

A particular kind of extreme events

Rogue waves

Isolated high-peak **oceanographic** extreme events that appear and disappear into nothingness.

→ More frequent than expected by gaussian statistics. [Kharif 2009, Springer]

\downarrow

Formal analogy with **fiber optics** through the Nonlinear Schrödinger Equation. [Solli 2007, Nature] Field broadening to many different **optical systems** and regimes. [Akhmediev 2016, J. Opt.] ↓ two main branches of study for extreme events:

- passive dispersive conservative (or weakly dissipative) systems (fibers).
- active dissipative systems (lasers).

A particular kind of extreme events

Rogue waves

Isolated high-peak **oceanographic** extreme events that appear and disappear into nothingness.

→ More frequent than expected by gaussian statistics. [Kharif 2009, Springer]

↓.

Formal analogy with **fiber optics** through the Nonlinear Schrödinger Equation. [Solli 2007, Nature] Field broadening to many different **optical systems** and regimes. [Akhmediev 2016, J. Opt.] ↓ two main branches of study for extreme events:

- passive dispersive conservative (or weakly dissipative) systems (fibers).
- active dissipative systems (lasers).

with spatial degrees of freedom.

Extreme events in active dissipative optical systems

Lack of a formal analogy with other extreme event contexts. \downarrow Exploration of extreme events and possible analogies from a statistical perspective.

Focus

- dynamical generating mechanisms (ex. spatiotemporal chaos [Selmi 2016, PRL], vortex turbulence [Gibson 2016, PRL], external crisis [Zamora-Munt 2013, PRA]).
- Extreme event predictability [Zamora-Munt 2013, PRA], [Alvarez 2017, EPJST].

Localized structure interaction

Conservative case: localized structure interaction \downarrow possible mechanism for the formation of extreme events. [Frisquet 2013, PRX]

Dissipative case

Motivation to study, in this context:

- cavity soliton and phase soliton interaction
- relationship with extreme events

1 Extreme events and localized structures

2 Broad-area semiconductor laser with saturable absorber

- Extreme event analysis and optimization
- Comparison with cavity solitons

3 Semiconductor ring laser with injection

- Phase solitons and complexes
- Extreme events from collisions
- Abnormal events in unstable roll regime

4 Broad-area semiconductor laser with injection

- Cavity soliton interaction
- Extreme event investigation

5 General conclusions

Model

[Vahed 2014, Phil. Trans. R. Soc.]

$F \propto$ amplitude electric field \Leftarrow	Ė	=	$[(1-i\alpha)D+(1-i\beta)\bar{D}-1+(d$	$(+i)\nabla_{\perp}^{2}]F$
$D \propto$ amplifier carrier density \Leftarrow	Ď	=	$b[\mu - D(1+ F ^2) - BD^2]$	$ au_{amp}$
$ar{D} \propto$ absorber carrier density \Leftarrow	Ď	=	$rb[-\gamma-ar{D}(1+s F ^2)-Bar{D}^2]$	$r = \frac{r}{\tau_{abs}}$

Model

[Vahed 2014, Phil. Trans. R. Soc.]

$\mathit{F} \propto amplitude$ electric field \Leftarrow	Ė	=	$[(1-i\alpha)D+(1-i\beta)\bar{D}-1+(d$	$(+i)\nabla_{\perp}^{2}]F$
$D \propto$ amplifier carrier density \Leftarrow	Ď	=	$b[\mu-D(1+ {\mathcal F} ^2)-BD^2]$	$ au_{amp}$
$ar{D} \propto$ absorber carrier density \Leftarrow	Ď	=	$rb[-\gamma-ar{D}(1+s F ^2)-Bar{D}^2]$	$r = \frac{r}{\tau_{abs}}$

Giovanna Tissoni

6 / 33

Oscillatory cavity soliton

Spatiotemporal chaos

Chaotic cavity soliton

Giovanna Tissoni

Université Côte d'Azur

December 11-12, 2017 7 / 33

Oscillatory cavity soliton

Spatiotemporal chaos

Chaotic cavity soliton

Giovanna Tissoni

Université Côte d'Azur

December 11-12, 2017 7 / 33

Oscillatory cavity soliton

Spatiotemporal chaos

Chaotic cavity soliton

Oscillatory cavity soliton

Spatiotemporal chaos

Chaotic cavity soliton

Search for **extreme events** in the **spatiotemporal chaos** regime

single **events** (extreme or not) are represented by the **spatiotemporal maxima** of the intensity in the transverse plane

Giovanna Tissoni

Spatiotemporal maxima PDF

Total intensity PDF 1 1 1 10^{-2} 1 10^{-2} 1 10^{-2} 10^{-2}

Favorable regime for EEs

Giovanna Tissoni

Recipe for extreme events

 low pump current (below threshold/bistable region)

• fast saturable absorber $(r \ge 2)$

Favorable regime for EEs

Giovanna Tissoni

Recipe for extreme events

low pump current (below threshold/bistable region)

Fast saturable absorber $(r \ge 2)$

Favorable regime for EEs

Comparison with cavity solitons

Comparison with cavity solitons

Comparison with cavity solitons

Role of CSs in extreme event formation

For values of *r* where CSs exist:

higher EE ratio where there is multistability with the soliton branch

- possible enhancement of EE
- possibly similar generating mechanism (modulational instability in space and Hopf instability on the stationary solutions in time → Q-switching)

Conclusions

Results

- Extreme events in the system (2D+time)
- EE optimization for low pump and fast SA
 - Relation to cavity solitons

C. Rimoldi, F. Prati, S. Barland, G. Tissoni, Phys. Rev. A 95, 023841 (2017)

1 Extreme events and localized structures

2 Broad-area semiconductor laser with saturable absorber

- Extreme event analysis and optimization
- Comparison with cavity solitons

3 Semiconductor ring laser with injection

- Phase solitons and complexes
- Extreme events from collisions
- Abnormal events in unstable roll regime

4 Broad-area semiconductor laser with injection

- Cavity soliton interaction
- Extreme event investigation

5 General conclusions

Semiconductor ring laser with injection

- active NL material
- incoherent pump
 - coherent injection

Semiconductor ring laser with injection

Model

 $F \propto \text{amplitude electric field} \Leftarrow \partial_z F + \partial_t F - \mathbf{d} \partial_z^2 F = T[\mathbf{y} - (1 + i\theta)F + (1 - i\alpha)DF]$ $D \propto \text{amplifier carrier density} \Leftarrow \partial_t D = \frac{bT}{\sigma} [\mu - D(1 + |F|^2)]$
Semiconductor ring laser with injection

Model

 $F \propto \text{amplitude electric field} \Leftarrow \partial_z F + \partial_t F - \oint \partial_z^2 F = T[\mathbf{y} - (1 + i\theta)F + (1 - i\alpha)DF]$ $D \propto \text{amplifier carrier density} \Leftarrow \partial_t D = \frac{bT}{\sigma} [\mu - D(1 + |F|^2)]$

Semiconductor ring laser with injection

Model

 $F \propto \text{amplitude electric field} \Leftarrow \partial_z F + \partial_t F - \oint \partial_z^2 F = T[\mathbf{y} - (1 + i\theta)F + (1 - i\alpha)DF]$ $D \propto \text{amplifier carrier density} \Leftarrow \partial_t D = \frac{bT}{\sigma} [\mu - D(1 + |F|^2)]$

Semiconductor ring laser with injection

Model

 $F \propto \text{amplitude electric field} \Leftarrow \partial_z F + \partial_t F - \mathbf{d} \partial_z^2 F = T[\mathbf{y} - (1 + i\theta)F + (1 - i\alpha)DF]$ $D \propto \text{amplifier carrier density} \Leftarrow \partial_t D = \frac{bT}{\sigma} [\mu - D(1 + |F|^2)]$

Phase soliton

traveling localized pulse with a positive chiral charge.

Simulation

Experiment

Phase soliton

traveling localized pulse with a positive chiral charge.

Simulation

PS generation Phase kink as initial condition: $\Phi_{+}(z) = 4 \tan^{-1}[\exp(-\beta z)]$

PS complexes

Interaction

Weakly attractive interaction experienced by PSs $PS_1 + PS_1 \rightarrow PS_2$

PS complexes

Interaction

Weakly attractive interaction experienced by PSs $PS_1 + PS_1 \rightarrow PS_2$

Simulation

10

-5

-10 -10 -5

Im(E) (a.u.) 5

PS complexes

Interaction

Weakly attractive interaction experienced by PSs $PS_1 + PS_1 \rightarrow PS_2$

Simulation

10³

10

events 10²

5 10

Re(E) (a.u.)

 exponential increase of merging time in function of the initial distance

- exponential increase of merging time in function of the initial distance
- PS with higher charges move slower inside the cavity

 $PS_2 + PS_1 \rightarrow PS_3$

Velocity and charge

1 Extreme events and localized structures

2 Broad-area semiconductor laser with saturable absorber

- Extreme event analysis and optimization
- Comparison with cavity solitons

3 Semiconductor ring laser with injection

- Phase solitons and complexes
- Extreme events from collisions
- Abnormal events in unstable roll regime

4 Broad-area semiconductor laser with injection

- Cavity soliton interaction
- Extreme event investigation

5 General conclusions

Regime for

- stable PS branch ($\theta + \alpha > 0$)
 - 🕨 high pump value

Experiment

Collisions between PS complexes and other transient structures

- transient structure with charge -1
- PS complex with charges +*n*

Collision with possible generation of additional positive charges

1 Extreme events and localized structures

2 Broad-area semiconductor laser with saturable absorber

- Extreme event analysis and optimization
- Comparison with cavity solitons

3 Semiconductor ring laser with injection

- Phase solitons and complexes
- Extreme events from collisions
- Abnormal events in unstable roll regime

4 Broad-area semiconductor laser with injection

- Cavity soliton interaction
- Extreme event investigation

5 General conclusions

Abnormal events in unstable roll regime

Argand plane 0.6 Ą 0.4 n 0.2 0.4 Re(E) **Roll branch** 0.4 0.3 0.1 0.2 0.1 0.3

Giovanna Tissoni

20 / 33

٧

Abnormal events in unstable roll regime

Argand plane

Roll branch

December 11-12, 2017 20

20 / 33

low values of injection (close to turning point)

Experiment

Simulation

1 mostly phase bounded dynamics

2 different dynamics close to the abnormal event

Giovanna Tissoni

Université Côte d'Azur

Giovanna Tissoni

Abnormal events associated with a change in the phase slope

Abnormal events associated with a change in the phase slope

Abnormal events associated with a change in the phase slope

Phase equation

Ć

$$\partial_z \rho + \partial_t \rho = T \left[(D-1) \rho + y \cos \phi \right]$$

 $\partial_z \phi + \partial_t \phi = -T \left[\theta + \alpha D + \frac{y}{\rho} \sin \phi \right]$
 $\partial_t D = \frac{bT}{\sigma} \left[\mu - D \left(1 + \rho^2 \right) \right]$

Abnormal events associated with a change in the phase slope

Phase equation

$$\partial_t \phi = -T \left[\theta + \alpha D + \frac{y}{\rho} \sin \phi \right]$$

for fixed *z*: rotation sign determined by the sign of r.h.s.

Abnormal events associated with a change in the phase slope

Phase equation

$$\partial_t \phi = -T \left[\theta + \alpha D + \frac{y}{\rho} \sin \phi \right]$$

for fixed *z*: rotation sign determined by the sign of r.h.s.

Abnormal events associated with a change in the phase slope

Phase equation

$$\partial_t \phi = -T \left[\frac{\theta + \alpha D}{\rho} + \frac{y}{\rho} \sin \phi \right]$$

for fixed *z*: rotation sign determined by the sign of r.h.s.

Abnormal events associated with a change in the phase slope

Phase equation

$$\partial_t \phi = -T \left[\theta + \alpha D + \frac{y}{\rho} \sin \phi \right]$$

for fixed *z*: rotation sign determined by the sign of r.h.s.

 $\begin{aligned} D_c &= -\theta/\alpha\\ \text{boundary between two rotation}\\ \text{directions.}\\ D_c \text{ associated to } I_c\\ -\frac{\theta}{\alpha} &= \frac{\mu}{1+I_c} \end{aligned}$

Giovanna Tissoni

24 / 33

Phase dynamics

o (**o**) start 2π (-2π) rotation **x** (**x**) end 2π (-2π) rotation

Phase dynamics

o (**o**) start 2π (-2π) rotation **x** (**x**) end 2π (-2π) rotation
Phase dynamics

o (**o**) start 2π (-2π) rotation **x** (**x**) end 2π (-2π) rotation

interplay of \pm chiral charges relevant in the generation of abnormal events

25 / 33

Phase dynamics

- negative charges only for high D (zero intensity)
- Phase slope change → loss of one of the charges

 $\begin{array}{l} \mbox{interplay of } \pm \mbox{ chiral charges} \\ \mbox{relevant in the generation of} \\ \mbox{ abnormal events} \end{array}$

Giovanna Tissoni

Université Côte d'Azur

Conclusions

Results

- PS complexes characterization and interaction
- Extreme events from collisions of transient structures carrying a negative charge and PS complexes
- ✓ Abnormal events emerging from unstable roll regime due to the interplay of ± chiral charges

F. Gustave, C. Rimoldi et al., *EPJD* **71**, 154 (2017) P. Walczak, C. Rimoldi et al., *Opt. Lett.* **42**, 3000 (2017) C. Rimoldi, F. Gustave et al., *Opt. Express* **25**, 22017 (2017)

1 Extreme events and localized structures

2 Broad-area semiconductor laser with saturable absorber

- Extreme event analysis and optimization
- Comparison with cavity solitons

3 Semiconductor ring laser with injection

- Phase solitons and complexes
- Extreme events from collisions
- Abnormal events in unstable roll regime

4 Broad-area semiconductor laser with injection

- Cavity soliton interaction
- Extreme event investigation

5 General conclusions

 $D \propto \text{amplifier carrier density} \Leftarrow \dot{D} = \mu - D - f(D)|F|^2 + \tilde{d} \nabla_{\perp}^2 D$

Model

[Prati 2010, EPJD]

 $F \propto \text{amplitude electric field} \Leftarrow \dot{F} = \sigma[F_l - (1 + i\theta)F + (1 - i\alpha)f(D)F + i\nabla_{\perp}^2 F]$ $D \propto \text{amplifier carrier density} \Leftarrow \dot{D} = \mu - D - f(D)|F|^2 + \tilde{d}\nabla_{\perp}^2 D$

Model

[Prati 2010, EPJD]

 $F \propto \text{amplitude electric field} \Leftarrow \dot{F} = \sigma[F_l - (1 + i\theta)F + (1 - i\alpha)f(D)F + i\nabla_{\perp}^2 F]$ $D \propto \text{amplifier carrier density} \Leftarrow \dot{D} = \mu - D - f(D)|F|^2 + \tilde{d}\nabla_{\perp}^2 D$

CS interaction

Merging time 10⁵ 10⁴ 10³ ب 10² 10 1 6 8 10 12 14 r_o $F_{I}=1, \mu=1.2\mu_{thr}, \theta=-2, \alpha=4, \sigma=400$

For
$$V(r) = -K^2 e^{-r/R}$$

 $\Rightarrow t_m \approx \pi \frac{R}{K} e^{r_0/(2R)}$

- conservative motion of two particles under exponentially decaying potential
 analogy with hydrophobic
 - \Rightarrow analogy with hydrophobic materials

Université Côte d'Azur

Extreme event investigation

Extreme event statistics

Spatiotemporal maxima PDF 10-2

Extreme event statistics

Phase space

250

Zero isolines

Possible connection with vortex turbulence [Gibson 2016, PRL] but very different dynamics.

Giovanna Tissoni

Conclusions

Results

- CS interaction as particles under exponentially decaying potential
- Extreme event and their relation to vortices and phase dynamics (work in progress)

S. R. Anbardan, C. Rimoldi et al., *Exponentially* decaying interaction potential of cavity solitons, submitted to PRE (2017)

1 Extreme events and localized structures

2 Broad-area semiconductor laser with saturable absorber

- Extreme event analysis and optimization
- Comparison with cavity solitons

3 Semiconductor ring laser with injection

- Phase solitons and complexes
- Extreme events from collisions
- Abnormal events in unstable roll regime

4 Broad-area semiconductor laser with injection

- Cavity soliton interaction
- Extreme event investigation

5 General conclusions

General conclusions

- Soliton interaction
- Extreme and abnormal event formation
- 1 Semiconductor laser
 - spatially 2D
 - \rightarrow cavity solitons
 - with saturable absorber
- 2 Semiconductor ring laser
 - spatially 1D (propagation) \rightarrow phase solitons
 - with coherent injection
- 3 Semiconductor laser
 - spatially 2D
 - \rightarrow cavity solitons
 - with coherent injection

Focus

 Generating physical and dynamical mechanisms

General conclusions

- Soliton interaction
- Extreme and abnormal event formation
- 1 Semiconductor laser
 - spatially 2D
 - \rightarrow cavity solitons
 - with saturable absorber
- 2 Semiconductor ring laser
 - spatially 1D (propagation) \rightarrow phase solitons
 - with coherent injection
- 3 Semiconductor laser
 - spatially 2D
 - \rightarrow cavity solitons
 - with coherent injection

Focus

 Generating physical and dynamical mechanisms

 \Downarrow

- Spatial effects
- 🖄 Soliton interaction
- 🥙 Modulational instability
- Chirality and vortices

Vortices in the LSA system

no clear connection to extreme events

Experimental issues LSA system

Experiments with the setup of a broad-area **monolithic** VCSEL with saturable absorber [Elsass 2010, Eur. Phys. J. D]

Main issue for extreme event analysis is the need for **detectors** that are

- fast pprox 1 ps
- broad-area
- spatially resolved pprox 1 $\mu{
 m m}$

Experimental issues LSA system

Experimental solution: reduce the dimensionality of the system. [Selmi 2016, PRL], [Coulibaly 2017, PRA]

Experiment

- rectangular (\approx 1D) pump geometry
- pinhole before detection
- finite size of avalanche photodiode
- statistics on intensity time trace averaged on a small area ≈ 25 μm²).

Simulation

simulations run in $1\mathsf{D}+\mathsf{time}$

- chaos characterization in 1D+time
- statistics on spatially averaged intensity time trace [Selmi 2016, PRL]

Comparison with [Selmi 2016, PRL]

Comparison with numerical results of [Selmi 2016, PRL]

• increase of the percentage of EE for higher μ

(analysis on intensity averaged temporal trace)

• increase of the Kaplan-Yorke dimension for higher μ

(analysis on the 1D+time intensity data)

Giovanna Tissoni

Université Côte d'Azur

December 11-12, 2017 33 / 33

discrepancy due to

- 1D vs 2D geometry in the simulations
- different quantity under study (average intensity vs spatiotemporal maxima)

more similar results when the authors consider the **spatiotemporal maxima in** 1D+time

Comparison with [Selmi 2016, PRL]

Comparison with **experimental results** of [Selmi 2016, PRL] How does looking at the **intensity time trace averaged** on a small area affect the statistics?

Might underestimate the presence of EE in their most favorable regime.

Fourier Spectrum

Fourier Spectrum

Fourier Spectrum

Fourier spectrum LSA

spectrum broadening in the spatiotemporal chaos regime

Effect of the diffusion coefficient in LSA

- **filter** on spatial frequencies in order to **avoid filamentation** due to high spatial frequency excitation.
- proven theoretically in [Fedorov 2000, PRE]
- Specific value here chosen phenomenologically (smallest value to avoid self-collapsing without disrupt or change the dynamics of the model and its solutions).

Weibull and Gumbel distributions

Study of the limit distribution for the maxima of sequences of indipendent and identically distributed variables

Weibull and Gumbel distributions

Study of the limit distribution for the maxima of sequences of indipendent and identically distributed variables

Favorable regime for EE

F

Conservative limit LSA

1D case

$$\dot{F} = \left[(1 - i\alpha)D + (1 - i\beta)\overline{D} - 1 \right]$$

$$\dot{D} = b \left[\mu - D \left(1 + |F|^2 \right) \right]$$

$$\dot{\overline{D}} = rb \left[-\gamma - \overline{D} \left(1 + s|F|^2 \right) \right]$$

[Oppo 1985], [Cialdi 2013] for class-B laser

$$\begin{aligned} x &= \log \frac{l}{l_s}, \ D &= D_s(1+n), \ \bar{D} &= \bar{D}_s(1+\bar{n}) \\ &\ddot{x} + 2b \left(D_s + s\bar{D}_s r \right) I_s(e^x - 1) \\ &= \\ -2b \left(D_s n + \bar{D}_s r\bar{n} \right) - 2b \left(D_s n + \bar{D}_s rs\bar{n} \right) I_s e^x \\ & \text{Conservative limit:} \end{aligned}$$

 $\ddot{x} + \frac{dV_{LSA}(x)}{dx} = 0$

motion of a unitary mass oscillator

$$\omega_{LSA}^2 = 2b \left(D_s + s \bar{D}_s r \right) I_s$$
 $V_{LSA}(x) = \omega_{LSA}^2 V(x)$

$$V(x) = e^x - x$$
 Toda potential

Conservative limit LSA 2D+time

$$\begin{aligned} \dot{F} &= F \left[D(1 - i\alpha) + \bar{D}(1 - i\beta) - 1 + (\delta + i) \nabla_{\perp}^2 \right] \\ \dot{D} &= -bD_s \left(I - I_s \right) \\ \dot{\bar{D}} &= -rb\bar{D}_s s \left(I - I_s \right) \end{aligned}$$

Not yet tested numerically

Fourier spectrum ring laser with injection

unstable roll regime ($\theta = -3.04$)

stable roll regime ($\theta = -3.03$)

Giovanna Tissoni

Université Côte d'Azur

Chirality

Phase solitons

Phase solitons carry only **positive** charges

Symmetry breaking

- propagative nature of the system
- presence of *D* whose dynamics develops on a different temporal scale

Modified forced Ginzburg-Landau model

$$\begin{bmatrix} 1 + 2i\tilde{d}\sigma\delta(1) \end{bmatrix} \frac{\partial E}{\partial \eta} + \frac{\partial E}{\partial \tau} - \frac{\tilde{d}\sigma^2}{T} \frac{\partial^2}{\partial \eta^2} E$$

= $T \left\{ y - [1 - \mu + i(\mu\alpha + \theta)] E - (1 - i\alpha) |E|^2 E \right\} ,$

with

$$\tilde{d} = \frac{1 + i\alpha}{\Gamma(1)^2(1 + \alpha^2)}$$

term of diffusion + dispersion since, at order $\epsilon=\mu-1$

$$\frac{\partial E}{\partial \tau'} = -\eta_0 \frac{\partial E}{\partial \eta} \,,$$

- dispersion can be present
- usually it is small, hence neglectable in the PS description and model dynamics

Giovanna Tissoni

Velocity and size

Velocity and size

Velocity and size

For increasing values of injection ✓ linear increase of PS velocity ✓ linear decrease of PS size

Front propagation in ring laser

Analogy with hydrophobic materials

Interaction of CSs as particles subject to an **exponentially decaying potential** U

Potential often associated to the **hydrophobic force** \rightarrow force experienced by nonpolar molecules and surfaces in water

[Israelachvili 1982, Nature] [Donaldson 2015, Langmuir]