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Extreme events in fluid dynamics:

Rogue waves

Rogue waves:

Events of extreme ocean surface
elevation.

® Mechanism not fully understood

® Probably caused by nonlinear
amplification (modulational
instability) out of a background of
(smaller) waves

= Probability density function
unknown.

Goal: Estimate tails of the
distribution
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“Draupner Wave”, Jan 1, 1995
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Extreme events in fluid dynamics: Rogue waves

Two basic ingredients:

= Random data from observations as input (prior)
= Accurate dynamical system to extrapolate output (posterior)

Wave Speciral Density (m" Hz)

Wave height observation Wave channel, TU Hamburg

Estimate probabilities of extreme events via large deviation theory
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Large Deviation Theory

= The way rare events occur is often
predictable — it is dominated by the
least unlikely scenario — which is the
essence of LDT

® Calculation of the least unlikely
scenario (maximum likelihood
pathway, MLP) reduces to a
deterministic optimization problem
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Large Deviation Theory

= The way rare events occur is often 0.8
predictable — it is dominated by the 06
least unlikely scenario — which is the 04
essence of LDT = 02
® Calculation of the least unlikely 0.0
scenario (maximum likelihood -02
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= Simple example: gradient systems (navigating a potential
landscape), transitions between local energy minima happen
through minimum energy paths (mountain pass transition)
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Large Deviation Theory

1.0
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Extreme events in stochastic systems: Large deviations

Consider the S(P)DE

dXE(t) = b(X=(t))dt + Veo(X=(t)) dW (t)
Then, the LDT rate function is

T T
=4 o v - e
0 0
The probability that { X (%)} ;0,7 is close to a path {¢(t)}icjo,7] IS

P { sup |X°(t) — o(t)] < (5} =< exp (—e 'Zr(¢)) fore — 0

0<t<T

The problem is reduced to a minimization problem

P{F(X(T)) =2|X°(0) =z} < exp <—5_1 IT((;S))

inf
$:¢(0)=z,F($(T))==2
Minimizer ¢* is called instanton
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Example: Ornstein-Uhlenbeck

Ornstein-Uhlenbeck process

du=0b(u)dt+dW, bu)=—-yu, v>0.

Consider extreme events with «(7") = z
(s0 F(u) = u(T)).

The instanton is

-2
u*(t) = 2 (t=T) (g) :

1—e 20T

obtained from constrained optimization

T
inf  Zp(z)= inf l/‘u+ ul? dt
ity T = BL, 2 [l

0

over the set

U. = {{ut} ( Flur) = z}

Yields optimal fluctuations to realize event.
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Rogue waves in MNLS

Evolution of a narrow-banded, uni-directional wave envelope «(t, z) on the surface of a fluid with
infinite depth:
modified nonlinear Schrédinger equation (MNLS) or Dysthe’s equation

Oru + %83071,—&- %Biu - li()d%u—&— %|u\2u+ %|u\28xu+ }IUQGH;U* - %\836\\u\2 =0
on domain = € Q with sea surface elevation 7(t, z) = Re(u(t, z)e!(For—wot))
= Equation for u(t¢, x) is
deterministic

® |nitial conditions uo(z) = u(0, x)
are random

= |nitial distribution 1o Gaussian
with spectrum approximating
observational JONSWAP
spectrum (North Sea)
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Rogue waves in MNLS

Evolution of a narrow-banded, uni-directional wave envelope (¢, z) on the surface of a fluid with
infinite depth:

modified nonlinear Schrédinger equation (MNLS) or Dysthe’s equation
Oru + %8xu + éaiu - Tlﬁagu + %|u|2u + %|u\20fu + iuZBxu* — %|01Hu\2 =0

on domain = € Q with sea surface elevation 7(t, z) = Re(u(t, z)e!(For—wot))

= Equation for u(t¢, x) is

deterministic Central assumption

= |nitial conditions uo(x) = u(0, z) The initial distribution evolves on long timescales

are random through forcing (wind) and damping, defining a ran-

dom background out of which rogue waves can

= Initial distribution .0 Gaussian evolve on a fast timescale, where forcing and damp-
with spectrum approximating ing are negligible.

observational JONSWAP
spectrum (North Sea)
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Rogue waves in MNLS

Evolution of a narrow-banded, uni-directional wave envelope «(t, z) on the surface of a fluid with
infinite depth:

modified nonlinear Schrédinger equation (MNLS) or Dysthe’s equation
Oru + %&cu + éaiu - Tlﬁagu + %|u|2u + %|u\20fu + iuZBxu* — %|01Hu\2 =0

on domain = € Q with sea surface elevation 7(t, z) = Re(u(t, z)e!(For—wot))

= Equation for u(t¢, x) is

deterministic Central assumption

= |nitial conditions uo(x) = u(0, z) The initial distribution evolves on long timescales

are random through forcing (wind) and damping, defining a ran-

dom background out of which rogue waves can

= Initial distribution .0 Gaussian evolve on a fast timescale, where forcing and damp-
with spectrum approximating ing are negligible.

observational JONSWAP
spectrum (North Sea)

Key difference: LDP on initial conditions instead of stochastic dynamics
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Large deviations for random initial data

dru(t) = b(u()),  u(0) = ug ~ io = exp(—e " G(up))

Given observable F'(u(T')), we are interested in
Pr(z) =P{F(T)) = 2},
and extreme events via LDP for its density pr(z) = dPr(z)/dz,
pr(2) < exp(e ' Zr(2)).

Define cumulant generating function

elog E,,loe)‘(lF(“(T)) ~ sup {AF(u(T)) — G(ug)} = Sr(N)
ug €U

Then, by the Gértner-Ellis theorem, Z(z) is the Fenchel-Legendre transform
of Sr(A), Sr(%) = sup(\z — T (2)
ze

and therefore
Ir(z) = inf G(u
T( ) wo:F(u(T))=z ( 0)
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Computational aspects

—
~
=

Define the Jacobian J (¢, ug) = ou

where «(0) = ug.
ug

® Solve constrained optimization through descent,

5ST - 5G(LLQ) T oF
Sug  dug AT, o) ou
® The Jacobian evolves according to
J(t,ug) = Mj(t.,uo)., J(0,u0) = Id

ou

= Repeat calculation for various ) to estimate S (), and thus
Zr(z) and probability Pr(z).

® |nstanton uj gives the most likely event leading to rogue wave
of height z, where

uy = argmax {G(ug) — AF (u(T,ug))}
uo €U
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Large deviations for random initial data: Rogue waves

For ocean surface waves described by MNLS:

du+ 20,u+ L03u— L2u+ LulPu+ 3ul?0pu+ tu0,u* — §|0,|[ul* =0

= |nitial distribution Gaussian and JONSWAP spectrum
approximates JONSWAP spectrum, 1
G(UO) = %<Uo, 071U0>

(but other forms are possible)

® Pick as observable

Wave Speciral Density (m*/ Hz)

F(u(T)) = max[u(T, z)| = maxn(T, z)

the maximum sea surface elevation at final
timet="1T.

G. Dematteis, T. Grafke, E. Vanden-Eijnden, PNAS 2017 (to appear), arXiv:1704.01496
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Large deviations for random initial data:

Rogue waves

rough sea (H, = 3.3m, BFl = 0.34)

Trogue wave regime

|
i e 0min I % o
107 4 ¢ 5min
® 10 min |
B ® 15 min 1
107 1 o 20 min
1
T T T T T T
2 4 6 8 10 12 14
H/m

high sea (H, = 8.2m, BFl = 0.85)

T rogue wave regimé
1 "
-
| "'\f\
H o oo
- I o o
o Omn o 3mm |
e lmin e S5min | |
* 2min 1
T T T T T T
5 10 15 20 25 30

H/m

G. Dematteis, T. Grafke, E. Vanden-Eijnden, PNAS 2017 (to appear), arXiv:1704.01496
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Large deviations for random initial data: Rogue waves

rough sea (H, = 3.3m, BFl = 0.34) high sea (H, = 8.2m, BFI = 0.85)
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G. Dematteis, T. Grafke, E. Vanden-Eijnden, PNAS 2017 (to appear), arXiv:1704.01496
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Large deviations for random initial data:

Rogue waves
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Comparison between Monte Carlo (dots) and LDT (lines):

= | DT is able to predict tails of rogue wave distribution.

= PDF converges for 7" — 20min (left) and 7" — 5min (right).

(corresponds to timescales associated with modulational instability)

= This is the timescale after which the initial distribution is converged to the invariant measure,

and the extreme event tails are correctly predicted.

G. Dematteis, T. Grafke, E. Vanden-Eijnden, PNAS 2017 (to appear), arXiv:1704.01496
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Rogue wave instantons

uxb) (m)

v — - m— S
S smo 100 1500 2000 2500 000 3500 4000 4500 5000 fime (min) o soo 1000 1500
x (m) *

. » = - ‘ 3000 ‘3500 4000 4500 5000

2000 2500
(m)

(random initial condition: standard event) (optimized initial condition: instanton)

® Evolution is purely deterministic

= Only operation done here is pick initial condition,
either at random (left) or optimized (right)
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Large deviations for random initial data: Rogue waves

4 ] t=20min = Monte Carlo

2 — LDT

n/m

Hs=33m H=85m

4 t = 10 min

n/m

I I I I I I I I I
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fIf/Hl

G. Dematteis, T. Grafke, E. Vanden-Eijnden, PNAS 2017 (to appear), arXiv:1704.01496
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Intermittency and extreme events

Rare event creates divergence
from background dynamics

= Consistent with picture but forward by
Sapsis et al. for intermittency in Uy
dynamical systems

= Assumption: extreme excursions occur
when dynamics hit pockets of ¢
instability

= Estimate pdf tail by measuring
probability of pockets with respect to
the inVariant measure Of baCkgrOUnd 1 Typical trajectory without extreme events

dynamlcs Mohamad, Cousins, & Sapsis, J. Comp. Phys. 322 (2016) 288-308

u,= span{u,}
u,= span{u,,u,}

»\

u,= span{u,,u,u,}

Region associated with instabilities
that lead to extreme events

u

Our approach formalizes this concept within the realm of large deviation theory and gives tools to
explicitely compute

= tail probabilities and expectations for observables

= most likely occurrence of extreme events

Accurate knowledge of the core distribution permits
prediction of its tail from determinstic dynamics!
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Statistics on large domains

1071+
0
AN
® |nitial Gaussian distribution St N\
converges to limiting distribution for £ gl S iy AN
large times = 100 J— T=tmin L=l
—— T =15 min, L =2Lg
(prior — posterior) — J-i8min Lo
1077 T T T I E—
= Can be used to compute probability o 1 2 3 4 5 6
of extremes in spatio-temporal z/m
domain via boxing argument 10° g=—=—
P(sup |u(t,z)| > 2) ~1—(1 = P(Ju > z|))"D = 107! E C
(t,x)€D Al 5 7 o -
(*) = 10 E L | zx\ralzazxt, L =38Ly
Iy 1— ~»= ™0
with Np = |D|/(/\CTC) % 1075 o L =2Lg via (%)
“a N L =2Ly
& 107% L =4Lg via (%)
= Extreme events no longer rare if E L=l
: & 107° o L =8Lo via (+)
domain large enough - e
107° T T T
0 2 4 6

z/m
G. Dematteis, T. Grafke, E. Vanden-Eijnden, PNAS 2017 (to appear), arXiv:1704.01496
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Statistics on large domains

® |nitial Gaussian distribution
converges to limiting distribution for
large times

(prior — posterior)

= Can be used to compute probability
of extremes in spatio-temporal
domain via boxing argument

P(sup Ju(t,z)| > 2) ~ 1=(1 = P(lu > 2|))"P
(t,z)eD
()
with Np = |D|/(AcTe)

= Extreme events no longer rare if
domain large enough
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G. Dematteis, T. Grafke, E. Vanden-Eijnden, PNAS 2017 (to appear), arXiv:1704.01496
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Comparison to Peregrin soliton

4(1 — 2it)Ty)

u(t, ) = Use /T (
14 4(t/Tw)” + 4(z/ Lu

Tobias Grafke
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)2*1>7 TnI:F: LnI:% Th
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Comparison to Peregrin soliton

A = 0.1k, A = 5.4-107%k; %)

NLS instanton (A = 0.19k, A = 5.4 - 10~

Peregrine soliton

10 | |
t =0 min t =5 min

[u]/m

t = 7.5 min t =10 min

|u|/m

T T T T T T T T T T
—2000 —1000 0 1000 2000 —2000 —1000 0 1000 2000

z/m z/m

4(1 — 2it/Ty) 2 )
2 7= 1) Ta=+5, Lau=3
1+4(t/Tw)* + 4(z/Ln) U;
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Concluding remarks

® Twist on LDT: deterministic system
(no stochastic forcing) with
random initial data
(~ JONSWAP)

® Extreme events occurring via
instability of the determistic
dynamics
(modulational instability)

= | DT allows to estimate probability
and mechanism of occurrence of
rogue waves in MNLS

= |nitial distribution plays a role of the
prior distribution in Bayesian
inference. Extreme event
information added via short time
dynamics to sample the posterior
distribution.

G. Dematteis, T. Grafke, E. Vanden-Eijnden, PNAS 2017 (to appear), arXiv:1704.01496
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