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Extreme events in fluid dynamics: Rogue waves

Rogue waves:

Events of extreme ocean surface
elevation.

Mechanism not fully understood

Probably caused by nonlinear
amplification (modulational
instability) out of a background of
(smaller) waves

Probability density function
unknown.

Goal: Estimate tails of the
distribution

Tanker “Stolt Surf” in 1977, New York Times

“Draupner Wave”, Jan 1, 1995
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Extreme events in fluid dynamics: Rogue waves

Two basic ingredients:
Random data from observations as input (prior)
Accurate dynamical system to extrapolate output (posterior)

Wave height observation Wave channel, TU Hamburg

Estimate probabilities of extreme events via large deviation theory
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Large Deviation Theory

The way rare events occur is often
predictable — it is dominated by the
least unlikely scenario — which is the
essence of LDT
Calculation of the least unlikely
scenario (maximum likelihood
pathway, MLP) reduces to a
deterministic optimization problem
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Simple example: gradient systems (navigating a potential
landscape), transitions between local energy minima happen
through minimum energy paths (mountain pass transition)

Tobias Grafke Rogue Waves and Extreme Ocean Surface Elevation



Large Deviation Theory

The way rare events occur is often
predictable — it is dominated by the
least unlikely scenario — which is the
essence of LDT
Calculation of the least unlikely
scenario (maximum likelihood
pathway, MLP) reduces to a
deterministic optimization problem −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Simple example: gradient systems (navigating a potential
landscape), transitions between local energy minima happen
through minimum energy paths (mountain pass transition)

Tobias Grafke Rogue Waves and Extreme Ocean Surface Elevation



Large Deviation Theory

The way rare events occur is often
predictable — it is dominated by the
least unlikely scenario — which is the
essence of LDT
Calculation of the least unlikely
scenario (maximum likelihood
pathway, MLP) reduces to a
deterministic optimization problem −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Simple example: gradient systems (navigating a potential
landscape), transitions between local energy minima happen
through minimum energy paths (mountain pass transition)

Tobias Grafke Rogue Waves and Extreme Ocean Surface Elevation



Large Deviation Theory

The way rare events occur is often
predictable — it is dominated by the
least unlikely scenario — which is the
essence of LDT
Calculation of the least unlikely
scenario (maximum likelihood
pathway, MLP) reduces to a
deterministic optimization problem −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Simple example: gradient systems (navigating a potential
landscape), transitions between local energy minima happen
through minimum energy paths (mountain pass transition)

Tobias Grafke Rogue Waves and Extreme Ocean Surface Elevation



Large Deviation Theory

The way rare events occur is often
predictable — it is dominated by the
least unlikely scenario — which is the
essence of LDT
Calculation of the least unlikely
scenario (maximum likelihood
pathway, MLP) reduces to a
deterministic optimization problem −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Simple example: gradient systems (navigating a potential
landscape), transitions between local energy minima happen
through minimum energy paths (mountain pass transition)

Tobias Grafke Rogue Waves and Extreme Ocean Surface Elevation



Extreme events in stochastic systems: Large deviations

Consider the S(P)DE

dXε(t) = b(Xε(t)) dt+
√
εσ(Xε(t)) dW (t)

Then, the LDT rate function is

IT (φ) = 1
2

T∫
0

∣∣∣σ(φ)−1
(
φ̇− b(φ)

)∣∣∣2 dt = 1
2

T∫
0

L(φ, φ̇) dt

The probability that {Xε(t)}t∈[0,T ] is close to a path {φ(t)}t∈[0,T ] is

P
{

sup
0≤t≤T

|Xε(t)− φ(t)| < δ

}
� exp

(
−ε−1IT (φ)

)
for ε→ 0

The problem is reduced to a minimization problem

P {F (Xε(T )) = z|Xε(0) = x} � exp

(
−ε−1 inf

φ:φ(0)=x,F (φ(T ))=z
IT (φ)

)
Minimizer φ∗ is called instanton
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Example: Ornstein-Uhlenbeck

Ornstein-Uhlenbeck process

du = b(u) dt+ dW , b(u) = −γu , γ > 0 .

Consider extreme events with u(T ) = z
(so F (u) = u(T )).

The instanton is

u∗(t) = zeγ(t−T )

(
1− e−2γt

1− e−2γT

)
,

obtained from constrained optimization

inf
{ut}∈Uz

IT (z) = inf
{ut}∈Uz

1
2

T∫
0

|u̇+ γu|2 dt

over the set

Uz =
{
{ut}

∣∣∣ F (uT ) = z
}

Yields optimal fluctuations to realize event.
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Rogue waves in MNLS

Evolution of a narrow-banded, uni-directional wave envelope u(t, x) on the surface of a fluid with
infinite depth:
modified nonlinear Schrödinger equation (MNLS) or Dysthe’s equation

∂tu+ 1
2
∂xu+ i

8
∂2xu− 1

16
∂3xu+ i

2
|u|2u+ 3

2
|u|2∂xu+ 1

4
u2∂xu

∗ − i
2
|∂x||u|2 = 0

on domain x ∈ Ω with sea surface elevation η(t, x) = Re(u(t, x)ei(k0x−ω0t))

Equation for u(t, x) is
deterministic

Initial conditions u0(x) ≡ u(0, x)
are random

Initial distribution µ0 Gaussian
with spectrum approximating
observational JONSWAP
spectrum (North Sea)

Central assumption

The initial distribution evolves on long timescales
through forcing (wind) and damping, defining a ran-
dom background out of which rogue waves can
evolve on a fast timescale, where forcing and damp-
ing are negligible.

Key difference: LDP on initial conditions instead of stochastic dynamics
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Large deviations for random initial data

∂tu(t) = b(u(t)), u(0) = u0 ∼ µ0 � exp(−ε−1G(u0))

Given observable F (u(T )), we are interested in

PT (z) = P{F (u(T )) ≥ z} ,

and extreme events via LDP for its density ρT (z) = dPT (z)/dz,

ρT (z) � exp(ε−1IT (z)) .
Define cumulant generating function

ε logEµ0e
λε−1F (u(T )) ∼ sup

u0∈U
{λF (u(T ))−G(u0)} ≡ ST (λ)

Then, by the Gärtner-Ellis theorem, IT (z) is the Fenchel-Legendre transform
of ST (λ), ST (λ) = sup

z∈R
(λz − IT (z))

and therefore IT (z) = inf
u0:F (u(T ))=z

G(u0)
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Computational aspects

Define the Jacobian J(t, u0) =
δu(t)

δu0
where u(0) = u0 .

Solve constrained optimization through descent,

δST
δu0

=
δG(u0)

δu0
− λJT (T, u0)

δF

δu

The Jacobian evolves according to

J̇(t, u0) =
δb(u(t, u0))

δu
J(t, u0), J(0, u0) = Id

Repeat calculation for various λ to estimate ST (λ), and thus
IT (z) and probability PT (z).

Instanton u∗0 gives the most likely event leading to rogue wave
of height z, where

u∗0 = argmax
u0∈U

{G(u0)− λF (u(T, u0))}
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Large deviations for random initial data: Rogue waves

For ocean surface waves described by MNLS:

∂tu+ 1
2∂xu+ i

8∂
2
xu− 1

16∂
3
xu+ i

2 |u|2u+ 3
2 |u|2∂xu+ 1

4u
2∂xu

∗ − i
2 |∂x||u|2 = 0

Initial distribution Gaussian and
approximates JONSWAP spectrum,

G(u0) =
1
2 〈u0, C

−1u0〉
(but other forms are possible)

Pick as observable

F (u(T )) = max
x∈Ω
|u(T, x)| = max

x∈Ω
η(T, x)

the maximum sea surface elevation at final
time t = T .

JONSWAP spectrum

G. Dematteis, T. Grafke, E. Vanden-Eijnden, PNAS 2017 (to appear), arXiv:1704.01496
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Large deviations for random initial data: Rogue waves

rough sea (Hs = 3.3m, BFI = 0.34) high sea (Hs = 8.2m, BFI = 0.85)
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Comparison between Monte Carlo (dots) and LDT (lines):

LDT is able to predict tails of rogue wave distribution.

PDF converges for T → 20min (left) and T → 5min (right).
(corresponds to timescales associated with modulational instability)
This is the timescale after which the initial distribution is converged to the invariant measure,
and the extreme event tails are correctly predicted.
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Rogue wave instantons

(random initial condition: standard event) (optimized initial condition: instanton)

Evolution is purely deterministic

Only operation done here is pick initial condition,
either at random (left) or optimized (right)
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Large deviations for random initial data: Rogue waves
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Intermittency and extreme events

Consistent with picture but forward by
Sapsis et al. for intermittency in
dynamical systems
Assumption: extreme excursions occur
when dynamics hit pockets of
instability
Estimate pdf tail by measuring
probability of pockets with respect to
the invariant measure of background
dynamics

M.A. Mohamad et al. / Journal of Computational Physics 322 (2016) 288–308 291

Fig. 1. The conditional decomposition (3) partitions the system response only when a rare event occurs due to an instability. This happens when the state 
of the system enters the instability region Re . In this example the subspace associated with rare events due to instabilities is V s = span{u3}. For clarity we 
only illustrate one intermittent instability in the figure, but rare responses will occur multiple times in this picture as the system evolves (since the region 
Re is associated with non-zero probability).

u(x, t) = ub(x, t) + ur(x, t), with ur = !V s [u], if ∥u∥ > ζ, and ub = u − ur, (3)

where !V s denotes the linear projection to the subspace V s . Above, ur describes the evolution of the rare and extreme 
component of u in the subspace V s provided the norm of the response satisfies the rare event threshold (i.e. this compo-
nent describes transient events due to intermittent instabilities) and ub is the background component that is given by the 
response excluding all rare responses, i.e. ub = u −ur . A similar decomposition onto a subspace of interest and a background 
component, but without taking into account the conditioning on rare events, has been utilized successfully for the uncer-
tainty quantification and filtering of turbulent systems [33,52]. This conditional decomposition will allow for the study of the 
two components separately (but taking into account mutual interactions), using different uncertainty quantification methods 
that (i) take into consideration the possibly high-dimensional (broad spectrum) character of the stochastic background, and 
(ii) the nonlinear and unstable character of rare events.

In this work we are interested in rare events that occur due to transient instabilities. To this end, we denote as Re the set of 
all background states that initiate instabilities that lead to rare events. In Fig. 1 we demonstrate the adopted decomposition 
in a three-dimensional system where the rare event subspace is defined by the linear span of u3 (in the figure we only 
illustrate one trajectory of the system that passes through Re , but multiple similar events occur over the duration of the 
system’s evolution).

The application of this decomposition onto a stochastic background and rare events relies on the following assumptions:

A1 The existence of intermittent events have negligible effects on the statistical characteristics of the stochastic attractor 
and can be ignored when analyzing the background state ub .

A2 Rare events are statistically independent from each other.
A3 Rare events are characterized by low-dimensional dynamics.

The first assumption allows for the application of closure models or representation methods that can deal with the high 
dimensional character of the stochastic background attractor. It expresses the property that the rare events, although of large 
magnitude, are localized in time and space and can induce only negligible modifications to the statistics of the background 
state. Certain turbulent systems exhibiting feedback energy transfer mechanisms, like those presented in [31], could possibly 
be handled by carefully taking into account the nature of this feedback processes. However, such systems are beyond the 
scope of this work and will be considered in the future. The second assumption follows from the rare character of extreme 
events. As for the third assumption, related to the low-dimensionality of the dynamics of rare events, follows naturally from 
their spatially or temporally localized character. We emphasize that all these assumptions do not imply any restrictions on 
the dimensionality of the stochastic background state. We will discuss these assumptions further in section 7, specifying the 
class of systems that can be treated with the proposed method.

Analysis of the various regimes

The analysis of the two regimes will consist of the following steps:

1. Order-reduction in the subspace V s in order to model the rare event dynamics, expressed through ur . Then using the 
approximation u(x, t) ≃ ur(x, t) we will compute the conditional pdf ρ(q | ∥u∥ > ζ, ub ∈ Re), under the condition that 
an extreme event occurs due to an internal instability in Re .

Mohamad, Cousins, & Sapsis, J. Comp. Phys. 322 (2016) 288–308

Our approach formalizes this concept within the realm of large deviation theory and gives tools to
explicitely compute

tail probabilities and expectations for observables

most likely occurrence of extreme events

Accurate knowledge of the core distribution permits
prediction of its tail from determinstic dynamics!
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Statistics on large domains

Initial Gaussian distribution
converges to limiting distribution for
large times
(prior→ posterior)

Can be used to compute probability
of extremes in spatio-temporal
domain via boxing argument
P( sup

(t,x)∈D
|u(t, x)| ≥ z) ∼ 1−(1− P(|u ≥ z|))ND

(?)
with ND = |D|/(λcτc)

Extreme events no longer rare if
domain large enough
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Comparison to Peregrin soliton
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Comparison to Peregrin soliton
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Concluding remarks

Twist on LDT: deterministic system
(no stochastic forcing) with
random initial data
(∼ JONSWAP)

Extreme events occurring via
instability of the determistic
dynamics
(modulational instability)

LDT allows to estimate probability
and mechanism of occurrence of
rogue waves in MNLS

Initial distribution plays a role of the
prior distribution in Bayesian
inference. Extreme event
information added via short time
dynamics to sample the posterior
distribution.
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