Vortex Reconnections and Density Waves in Trapped Bose-Einstein Condensates

L. Galantucci C. F. Barenghi, N. Parker, F. Dalfovo, G. Lamporesi, G. Ferrari

Physical Review X 7, 021031 (2017)

SIG on Wave Turbulence

Birmingham, 11 December 2017

・ロト・西ト・ヨト・ヨー うらつ

Overview

Overview

2 Quantum Vortex Reconnections

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

Plasmas

- reconnections of magnetic field lines [Zhike *et al., Nat. Com.* (2016)]
- anomalous heating of solar corona

[Cirtain et al., Nature (2013)]

• explosive events, solar and stellar flares [Che *et al.*, *Nature* (2011)]

Mode

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Nematic Liquid Crystals

[Chuang et al., Science (1991)]

Polymers and DNA

[Marenduzzo et al., PNAS (2009)]

M. Vazquez (UC DAVIS) De W. Sumners (Florida)

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Optical beams

[Dennis et al., Nature (2010)]

Classical and Quantum Fluids

[Hussain et al., Phys. Fluids (2011)]

[Zuccher et al., Phys. Fluids (2012)]

・ロト ・聞 ト ・ ヨト ・ ヨト

э

Reconnections

- trigger turbulent energy cascade
- redistribute helicity among scales
- enhance fine-scale turbulent mixing

Mode

Quantum Fluids

neutron stars

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- ⁴He
- ³He-B
- BECs

[Baggaley et al., Phys. Rev. Lett., 109, 205304 (2012)]

Bose-Einstein Condensation

•
$$\lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$$
 vs $d \sim \left(\frac{V}{N}\right)^{1/3} = n^{-1/3}$

• $\lambda_T^3 n \ll 1$ classical gas Maxwell-Boltzmann **p** distribution

- $\lambda_T^3 n \gtrsim 1$ quantum gas
 - Fermi-Dirac distribution FERMIONS
 - Bose distribution BOSONS

• bosons, $T < T_c$ $N_0(T) = N[1 - (T/T_c)^{3/2}]$ ideal Bose Gas

• macroscopic $\Psi_0(\mathbf{x}, t) = \sqrt{n_0(\mathbf{x}, t)} e^{i\theta(\mathbf{x}, t)}$, $||\Psi_0||^2 = N$

Weakly interacting Bose-Einstein Condensates (BECs)

• Gross-Pitaevskii model $a_s \ll n^{-1/3}$

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{x}, t)\Psi + g|\Psi|^2\Psi, \qquad g = \frac{4\pi\hbar^2 a_s}{m}$$

• Madelung transformation $\Psi = \sqrt{n}e^{i\theta}$, **v**

$$g = \frac{1}{m}$$
$$w = \frac{\hbar}{m} \nabla \theta$$

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{v}) = 0$$

$$mn\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v}\right] = -\nabla \left(p + p_Q\right) - n\nabla V$$

• $p = \frac{gn^2}{2}$, $p_Q = -\frac{\hbar^2}{4m} n \nabla^2 (\ln n)$ quantum pressure • $\Delta \gg \xi = (\hbar^2/2mgn)^{1/2}$ recover compressible Euler • $p_Q \Rightarrow$ reconnections

Classical vs Quantum fluids

• Classical Euler (inviscid) fluids

$$\rho\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \,\mathbf{v}\right] = -\nabla p$$

NO reconnections, $\dot{E} = 0$, \mathcal{H} constant

• Classical Navier-Stokes (viscous) fluids

$$\rho\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \,\mathbf{v}\right] = -\nabla p + \eta \nabla^2 \mathbf{v}$$

reconnections driven by dissipation, $\dot{E} < 0$, \mathcal{H} ?

Quantum BECs

$$mn\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v}\right] = -\nabla p - \nabla p_Q$$

reconnections driven by quantum pressure, $\dot{E} = 0$, \mathcal{H} ?

Classical Vortices

In classical viscous fluids vorticity $\boldsymbol{\omega} = \nabla \times \mathbf{v}$ is unconstrained

- vortices any shape, size, orientation
- vortex vorticity flux (circulation $\boldsymbol{\Gamma}$) any strength
- vortex core is finite, arbitrary

Quantized Vortices

- rotation, temperature quench
- one–dimensional structures
- topological defects of order parameter Ψ
- $\boldsymbol{\omega}_s$ confined to vortex lines, $\boldsymbol{\omega}_s = \kappa \oint_{\mathscr{L}} \mathbf{s}'_i(\zeta, t) \delta^{(3)}(\mathbf{x} \mathbf{s}_i(\zeta, t)) d\zeta$

Tee	6 m co o	1	1000
	1100	IUCI	1011

Overview

2 Quantum Vortex Reconnections

Importance of Quantum Vortex Reconnections

- redistribute energy among scales
- redistribute helicity among scales [Scheeler *et al.*, *PNAS* (2014)]
- enhance mixing
- trigger a Kelvin Wave cascade [Kivotides *et al.*, *Phys. Rev. Lett.* (2001)]
- transform incompressible kinetic energy into acoustic energy [Leadbeater *et al.*, *Phys. Rev. Lett.* (2001)]
- in superfluid ⁴He turbulence
 - Kolmogorov spectrum

[Baggaley et al. Phys. Rev. Lett. (2012)]

・ロト・西ト・ヨト・ヨー うらつ

Homogeneous superfluid systems

- confirmation the Feynman conjecture [Koplik & Levine, *Phys. Rev. Lett.* (1993)]
- *universal route* to reconnection via formation pyramidal cusp [de Waele & Aarts, *Phys. Rev. Lett.* (1994)] [Tebbs *et al., J. Low Temp. Phys.*, (2011)]

induced cascade of vortex rings

[Kerr, Phys Rev Lett(2011)]

[Kursa et al., Phys Rev B (2011)]

Homogeneous superfluid systems

- scaling $\delta(t) \sim t^{\alpha}$
- conservation of helicity (knottedness)

$$\mathcal{H} = \int_V \mathbf{v} \cdot \boldsymbol{\omega} d\mathbf{x}$$

• decay of knots via particular pathways

Homogeneous superfluid systems

• scaling $\delta(t) \sim t^{\alpha}$

[de Waele & Aarts, *Phys. Rev. Lett.*, **72**, 482 (1994)] [Nazarenko & West, *J. Low. Temp. Phys.*, **132**, 1 (2003)] [Bewley *et al. PNAS*, **105**, 13707 (2008)] [Tebbs *et al., J. Low. Temp. Phys.*, **162**, 314 (2011)] [Zuccher *et al., Fluids. Phys*, **24**, 125108 (2012)] [Villois *et al., Phys. Rev. Fluids*, **2**, 044701 (2017)]

• conservation of helicity \mathcal{H} (*knottedness*)

[Scheeler *et al.*, *PNAS*, **111**, 15350 (2014)]
[Laing *et al.*, *Sci. Rep.*, **5**, 9224 (2015)]
[Zuccher & Ricca *Phys. Rev. E*, **92**, 06101 (2015)]
[Di Leoni *et al.*, *Phys. Rev. A*, **94**, 043605 (2016)]
[Salman, *Proc. R. Soc. A*, **473**, (2017)]

• decay of knots via particular pathways

[Kleckner et al., Nat. Phys., 12, 650 (2016)]

< ロ > < 同 > < 三 > < 三 > < 三 > の Q ()

Inhomogeneous BECs

boundaries, image vortices

• non-homogeneous $V(\mathbf{x}, t)$, $\nabla \rho$ drive vortex motion

[Anderson et al., Phys. Rev. Lett. 85, 2857 (2000)]

Trento Experiments Trapped 3D BEC

- cigar-shaped BEC of Na atoms
- Kibble-Zurek (quench) generation of solitonic vortices [Lamporesi *et al., Nat. Phys.* (2013)]
- real time imaging of $\Delta N/N \simeq 4\%$

[Donadello et al., Phys. Rev. Lett. (2014)]

Vortex Interactions Real Time Imaging

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

[Serafini et al., Phys. Rev. Lett. (2015)]

1st direct evidence vortex interactions 3D BECs!

Overview

2 Quantum Vortex Reconnections

・ロト・日本・日本・日本・日本・日本

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Gross–Pitaevskii Model, T = 0

$$i\frac{\partial\Psi}{\partial t} = -\frac{1}{2}\nabla^2\Psi + \frac{1}{2}\left[\left(\frac{\omega_x}{\omega_\perp}\right)^2 x^2 + y^2 + z^2 + \right]\Psi + \frac{4\pi Na_s}{\ell}|\Psi|^2\Psi$$

VORTEX TRACKING

• Pseudo-vorticity field $\hat{\omega}$ • $\Psi = \sqrt{n}e^{i\theta} = 0, \quad d\Psi = 0$ • $\hat{\omega} = \frac{\nabla n \times \nabla \theta}{|\nabla n \times \nabla \theta|}$

[Rorai et al., J. Fluid Mech. (2016)]

[Villois et al., J. Phys. A (2016)]

Overview

2 Quantum Vortex Reconnections

Mode

Vortex Dynamics Initial vortex configurations

•
$$\beta_0 = \pi/2$$

- equidistant from
 - radial plane x = 0

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Vortex Dynamics Stage I : 2 single-vortex motions

• $\delta \ge R_{\perp}$

- elliptical
- $\chi = x_0 / R_x = r_{max} / R_\perp$
- isolines *V*(**x**)
- $v \propto \nabla \rho / \rho \propto \chi / (1 \chi^2)$
- outer vortices faster

$$T = \frac{8\pi (1 - \chi^2)\mu}{3\hbar\omega_{\perp}\omega_z \ln(R_{\perp}/\xi)}$$

[Lundh, Ao, PRA, **61** (2000)] [Svidzinsky, Fetter, PRL, **84** (2000)] [Sheehy, Radzihovsky, PRA, **70** (2004)]

Vortex Dynamics Stage II : Rotation on radial plane

- $\delta \sim R_{\perp}$
- anti-parallel configuration
- slows down axial motion

Vortex Dynamics Stage III : Two COMPETING Dynamics

- axial colliding motion
- radial drift towards centre

• balance determines regime

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• χ unique parameter

Vortex Interaction Regimes RECONNECTION

• $\chi = 0.375$ ($\chi > 0.3$)

▲□▶▲□▶▲□▶▲□▶ = つへで

Vortex Interaction Regimes BOUNCE

• $\chi = 0.22$ ($\chi < 0.25$)

▲□▶▲□▶▲□▶▲□▶ □ のへで

Mode

Vortex Interactions Regimes DOUBLE RECONNECTION

• $\chi = 0.25$ (0.25 $\leq \chi \leq 0.3$)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Vortex Interactions Regimes Numerics vs Experiments

- vortices created via Kibble Zurek Mechanism
- vortex initial configuration not be predicted
- NEW experiments: axial position, radial vortex orientation

Vortex Reconnections

- $0.35 \le \chi \le 0.5$
- $\delta(t) = A t^{\alpha}$ scaling
- emission of rarefaction pulse for varying χ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Results

$\delta(t) = A t^{\alpha}$ scaling

• Experiments [Paoletti el al., PNAS (2008)]

symmetric
 α[±] = 1/2

▲□▶▲□▶▲□▶▲□▶ ■ のへの

- Analytics [Nazarenko & West, J. Low. Temp. Phys., 132, 1 (2003)]
 - density *n* small system
 - drop NL term

• symmetric

•
$$\alpha^{\pm} = 1/2$$

$\delta(t) = A t^{\alpha}$ scaling

- GPE numerical simulations
 - homogeneous systems
 - *almost* straight vortices
 - fixed $\delta(0) \sim 5\xi$
 - $[A^{\pm}, \alpha^{\pm}] = f(\beta)$

- [Zuccher et al., Phys Fluids 24, 125108 (2012)]
 - $\alpha^- \in (0.3, 0.44)$, $\alpha^+ \in (0.63, 0.73)$, $\alpha^{\pm} = f(\beta)$ asymmetric
 - emission rarefaction pulse
- [Rorai et al., J. Fluid Mech. (2016)]
 - $\alpha^- = \alpha^+ = 1/2$ for $\beta = \pi$ symmetric
 - $\alpha^- = 1/3$, $\alpha^+ = 2/3$ for $\beta = \pi/2$ asymmetric
- [Villois et al., Phys Rev Fluids 2, 044701 (2017)]
 - $\alpha^- = \alpha^+ = 1/2 \quad \forall \beta$ symmetric $A^{\pm} = f(\beta)$
3D Trapped BEC: throwing vortices against each other

• different $\delta(0) = f(\chi)$

• different
$$v_x^{rel}(\delta = R_{\perp}) = f(\chi)$$

• reconnections at different $n = f(\chi)$

▲□▶▲□▶▲□▶▲□▶ = つへで

Reconnections

Reconnections

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

15

 r/ξ_ℓ

20

25

Reconnections

Mode

PRE Reconnection scaling

Mode

PRE Reconnection scaling

PRE Reconnection scaling

• Outer region $\delta(t) \gg 4\xi$ • dynamics: $\boldsymbol{v}_{rol}^{\chi}(\nabla \rho / \rho)$ • $\delta(t) = f(V, t) = A_{out}^{-} V t$ • $V_{orb}^* = V_{orb}^*(\chi) \equiv C \frac{L_{orb}}{T_{orb}}$ $= C' \frac{\chi}{1-\chi^2} R_x \omega_x$ • $\tilde{\delta} = \delta / L_{orb}$ • $\tilde{t} = t/T_{orb}$

PRE Reconnection scaling

- Outer region $\delta(t) \gg 4\xi$
 - dynamics: $\boldsymbol{v}_{rel}^{x}(\nabla \rho / \rho)$
 - $\delta(t) = f(V, t) = A_{out}^- V t$

•
$$V_{orb}^* = V_{orb}^*(\chi) \equiv C \frac{L_{orb}}{T_{orb}}$$

$$= C' \frac{\chi}{1-\chi^2} R_x \omega_x$$

•
$$\tilde{\delta} = \delta / L_{orb}$$

•
$$\tilde{t} = t / T_{orb}$$

POST Reconnection Dynamics

- opst reconnection
 - faster than post
- INHOMOGENEOUS
 - $\Delta v \nearrow$ as $\chi \searrow$
- HOMOGENEOUS
 - $\Delta v \nearrow as \perp \rightarrow \parallel$
- density plays fundamental role
- emission rarerfaction pulse
- preliminary results

▲□▶▲□▶▲□▶▲□▶ = つへで

1D Density profiles

• $\chi = 0.35$

1D Density profiles

• $\chi = 0.4$

1D Density profiles

• $\chi = 0.5$

Summary

- GPE numerical simulations of vortex dynamics in inhomogeneous confined superfluids
- observed three vortex interaction regimes
 - reconnections
 - bounce
 - double reconnections
 - ejections

[Serafini, LG, et al., Phys Rev X 7, 021031 (2017)]

- experimental evidence in Trento
 - orientation of vortices
- Inner core and Outer scalings
- characterization of rarefaction pulse and

relate to non-symmetrical pre/post behaviour

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

THANK YOU!

Mode

Vortex Interaction Regimes

Vortex Interaction Regimes

• $\chi = 0, 0.7$

(ロ)

Mode

Vortex Interactions Regimes ORBITING

Vortex Interactions Regimes ORBITING

• $\chi = 0.33, 0.5$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

Experiments Density residuals

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Experiments Outcoupling

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

Experiments Density residuals

Vortex Interactions Regimes Numerics vs Experiments

Ejection by reconnection

・ロト・日本・日本・日本・日本

Vortex Interactions Regimes Statistics

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Bose-Einstein Condensates (BECs)

•
$$\lambda_{DB} = \frac{\hbar}{\sqrt{2\pi m k_B T}}$$
 vs $d \sim \left(\frac{V}{N}\right)^{1/3} = n^{-1/3}$

• $\lambda_{DB}^3 n \sim 1$ onset of condensation T_c

- $T \rightarrow 0$ giant matter wave **BEC**
- macroscopic wavefunction $\Psi(\mathbf{x}, t) = \sqrt{n(\mathbf{x}, t)} e^{i\theta(\mathbf{x}, t)}$, $||\Psi||^2 = N$
- Gross-Pitaevskii Eq. $i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V(\mathbf{x}, t) \Psi + g |\Psi|^2 \Psi$

٩

Bose-Einstein Condensates (BECs)

• Gross-Pitaevskii model

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V(\mathbf{x}, t) \Psi + g |\Psi|^2 \Psi$$

Madelung transformation $\psi = \sqrt{n} e^{i\theta}$, $\mathbf{v} = \frac{\hbar}{m} \nabla \theta$

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{v}) = 0$$

$$mn\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v}\right] = -\nabla \left(p + p_Q\right) - n\nabla V$$

• $p = \frac{gn^2}{2}$, $p_Q = -\frac{\hbar^2}{4m} n \nabla^2 (\ln n)$ • $\Delta \gg \xi = (\hbar^2 / mgn)^{1/2}$ recover compressible Euler • $p_Q \Rightarrow$ reconnections

Quantum Fluids

- $\Delta \lesssim \xi$
- BECs
- GP model
- vortices, sound waves
- reconnections

 $\Delta \gg \xi$

- Helium II
- Vortex filaments
- incompressible Euler fluid
- ad hoc reconnections

[Koplik & Levine (1993)]

[Baggaley *et al.* (2012)]

Classical vs Quantum fluids

• Classical Euler (inviscid) fluids

$$\rho\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \,\mathbf{v}\right] = -\nabla p$$

NO reconnections, \mathcal{H} constant

• Classical Navier-Stokes (viscous) fluids

$$\rho\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \,\mathbf{v}\right] = -\nabla p + \eta \nabla^2 \mathbf{v}$$

reconnections driven by dissipation, \mathcal{H} ?

Quantum BECs

$$mn\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v}\right] = -\nabla p - \nabla p_Q$$

reconnections driven by quantum pressure, \mathcal{H} ?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Experiments Outcoupling

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

Model

Numerics VS Experiments

Experimen

- $\omega_{\perp} = 2\pi 131 \text{Hz}$
- $\omega_z = 2\pi 13 \text{Hz}$
- $\mu = 10 \div 27\hbar\omega_{\perp}$
- T = 200 n K
- $\frac{\Delta N}{N_0} = 0.04$ $(\mu = \mu(t))$

Numerical Simulations

- $\omega_{\perp} = 2\pi 131 \text{Hz}$
- $\omega_z = 2\pi 26 \text{Hz}$
- $\mu = 10\hbar\omega_{\perp}$
- T = 0K

•
$$\frac{\Delta N}{N_0} = 0$$
 ($\mu = \text{const}$)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Mode

Vortex Interactions Regimes Unperturbed dynamics

•
$$r_{0,y} = \frac{1}{4}$$
 $r_{0,y} = \frac{1}{3}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

The "Trento" Experiment

- Creation of topological defects via Kibble–Zurek mechanism
- solitonic vortices: non uniform phase profile

Experimen

- $\omega_{\perp} = 2\pi 131 \text{Hz}$
- $\omega_z = 2\pi 13 \text{Hz}$
- $\mu = 10 \div 27\hbar\omega_{\perp}$
- T = 200 n K

•
$$\frac{\Delta N}{N_0} = 0.04$$
 $(\mu = \mu(t))$

Numerical Simulations

• $\omega_{\perp} = 2\pi 131 \text{Hz}$

•
$$\omega_z = 2\pi 26 \text{Hz}$$

•
$$\mu = 5\hbar\omega_{\perp}$$

•
$$T = 0K$$

•
$$\frac{\Delta N}{N_0} = 0$$
 ($\mu = \text{const}$)

・ロト・日本・日本・日本・日本

The "Trento" Experiment

• One vortex dynamics

$$T = \frac{8\pi (1 - r_0^2)\mu}{3\hbar\omega_\perp \ln(R_\perp/\xi)\omega_z}$$

• Two vortex dynamics

GPE simulations

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2}\nabla^2\psi + \frac{1}{2}\left(x^2 + y^2 + (\omega_z/\omega_\perp)^2 z^2\right)\psi + 4\pi\left(\frac{Na_s}{\ell}\right)|\psi|^2\psi$$

•
$$\ell = \sqrt{\frac{\hbar}{m\omega_{\perp}}}$$

• $\tau = \frac{1}{\omega_{\perp}}$
• $\epsilon = \hbar\omega_{\perp}$

・ロト・西ト・ヨト・ヨー うらつ

GPE simulations

Parameters

- second–order finite difference schemes
- 4th order Runhe-Kutta time integration
- OpenMP parallelization
- $\Delta x = \xi/3 = 0.1$
- $\frac{\Delta}{t} < \frac{1}{2} (\Delta x)^2 = 1,25 \times 10^{-3}$
- $R_{\perp} = 3.16$, $R_z = 16$
- $NX = NY = N_{\perp} = 160$, $N_z = N_{\parallel} = 480$
- $N_t = 2 \div 5 \times 10^4$, $T \sim 0.5d$
- 300 MB / dumped wavefunction

Density profiles

ψ Relaxation - Imaginary time advancement

• ψ_0 : Thomas – Fermi profile

$$\psi_0 = \begin{cases} \frac{\mu - V}{g} & \text{for } \mu \ge V(\mathbf{r}) \\ 0 & \text{elsewhere} \end{cases}$$

- τ_0 via Energy condition: $\frac{\Delta E}{E} < 10^{-6}$
- vortex imprinting $\psi = \psi_0(\tau_0) \Pi_i \psi_i$
- τ_v same Energy condition $\frac{\Delta E}{E} < 10^{-6}$

200
Model

Vortex identification

Pseudo-vorticity field

• ω

- $\rho = 0 \ d\rho = 0$
- $d\psi_r = d\psi_i = 0$

•
$$\nabla \psi_r \cdot \widehat{\omega} = \nabla \psi_i \cdot \widehat{\omega} = 0$$

•
$$\widehat{\omega} = \frac{\nabla \psi_r \times \nabla \psi_i}{|\nabla \psi_r \times \nabla \psi_i|}$$

• $\widehat{\omega} = \frac{\nabla \rho \times \nabla \theta}{|\nabla \rho \times \nabla \theta|}$

Difficulties

- *ρ*(**r**) → 0 as we move to the boundaries
- vast region with *ρ*(**r**) → 0 when reconnections
- FIRST POINT NECESSARY

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Vortex identification

- Γ on each mesh element
- node with the lowest density ρ_{min}
- multiple reconstruction of same vortices
- potentially 12 equivalent reconstructions
- improved with sub grid resolution

